
Investigating On Line Message Generation

in Software Applications:

The GLOSSASOFT1 Results

Constantine D. Spyropoulos, Evangelos A. Karkaletsis, George A. Vouros,
Timo Honkela*2, Krista Lagus*, and Aarno Lehtola*

Institute of Informatics & Telecommunications,
National Centre for Scientific Research (N.C.S.R.) "DEMOKRITOS",

153 10 Aghia Paraskevi, Athens, Greece
Tel: +301 6510310, +301 6513110 ext.520, Fax: +301 6532175,

E-mail: costass@iit.nrcps.ariadne-t.gr

*VTT Information Technology
PB 1201, FIN - 02044 VTT, Finland

Tel: +358 0 456 6032, Fax: +358 0 456 6027, E-mail: aarno.lehtola@vtt.fi

Abstract. This paper presents the results of the GLOSSASOFT project in the area of on line message
generation in software applications. First, it presents the existing approaches for generating messages and
discusses their drawbacks. Then two new approaches aiming to tackle these drawbacks are investigated. The
first concerns with the use of extended message templates and the second one with the use of a language
independent knowledge base that contains knowledge about the structure and functions of a software
application. The two approaches are presented using case studies examples and their costs and benefits are
analysed.

1. INTRODUCTION

The adaptation of a software application to the needs and requirements of local markets,
which is called localisation, is a very important consideration if companies wish to survive the
fierce competition in the growing markets. Software products must "speak" the language of
the users. On the other hand, the aim of internationalisation, is to create software products that
can be easily localised to several markets.

A major part of software localisation concerns the adaptation of messages to the needs and
requirements of the local markets. In an internationalised software application messages are
stored, separately from the source code of the software, in message catalogues. In this way,
the localisation of messages does not involve the rewriting of the software code but only the
adaptation of the message catalogue.

The most common approach for organising messages in a software application is the use of
canned messages. Since canned messages are fixed, software developers have to maintain

1 GLOSSASOFT is a project partially supported by the EU under the contract LRE-61003 together with Open

University (GB), N.C.S.R. "Demokritos" (GR), Claris (IR), HP Hellas (GR), VTT (Fi), and BULL (Fr).

2 On leave at Helsinki University of Technology

separate entries in the message catalogue for messages with many similarities. This drawback
can be tackled using message templates. These are messages with slots which can be
substituted by actual values depending on the context in which each message is generated
[Spyropoulos 93]. For example, instead of using four messages to announce that one of the
four disk drives of the system is damaged, we can use the message template "Disk <number of
disk> is damaged". This message template can also be used to announce that "Disks 1, 2 are
damaged" if a morphological generation routine is called to make the appropriate
morphological adaptations. The use of these "extended" message templates is especially
important for languages with many inflectional word forms (synthetic languages, such as
Finnish3). There will be no need to maintain separate entries inside the message catalogue for
the messages that have only different word forms.

The use of extended message templates improves the organisation of message catalogues.
However, we still have to maintain different extended message templates for the different
languages supported. It would help a lot if we could generate the messages for all the different
languages from one common language-independent ("interlingual") representation by calling
the appropriate syntactic and morphological generation routines.

These problems motivated us to investigate the on-line message generation in software
applications. The paper describes two different approaches examined in the context of two
restricted case studies of the GLOSSASOFT project [Spyropoulos 94b]. The first approach
considers the combined use of message templates and morphological generation, that is the
use of extended message templates. The second approach considers the dynamic on-line
generation of messages from a language independent representation using knowledge bases
and natural language generation techniques.

Section 2 presents the method for generating messages in a software application using
extended message templates. Section 3 describes the method for generating multilingual
diagnostic messages by exploiting knowledge of the software application. Finally, section 4
summarises the results of our work and describes our future plans.

2. ON-LINE GENERATION OF MESSAGES USING EXTENDED MESSAGE
TEMPLATES

In our first case study we investigated the use of extended message templates. We proposed
an architecture for internationalised software applications (see Fig. 1) that is based on the use
of message catalogues of extended message templates and the use of morphological
generation routines.

3 The complexity of Finnish morphology can be described by stating that a single noun has almost 2000 potential

inflectional word forms and each verb over 10000

Figure 1. On-line generation of messages using extended message templates

Message Catalogue

Messages

Manager

Morphological

Generator

Software Code

(message code, slot fillers)

Core of the Internationalised Software Application

User

Software

Data

for language L1

Morphological Rule

for language L1

According to this architecture, the core of the software contains the source code, the software
data and the Messages Manager. The message catalogue with the extended message templates
for the language currently supported (L1) is outside the core of the software application. Two
features are included in each extended message template: the language and the linguistic
specification (morphological features) for the lexemes that will substitute the slots in the
message template. The basic idea in this architecture is the use of a Morphological Generator
for inflecting the set of lexemes to their proper forms.

The software source code asks for the appropriate message from the Messages Manager
giving the message template code and the slot fillers. The Messages Manager retrieves the
corresponding message template and sends the lexemes (from the slot fillers) and their
morphological features (from the message template) to the Morphological Generator. The
Morphological Generator inflects the lexemes to their proper forms, using the morphological
rules for language L1, and returns them to the Messages Manager. The inflected lexemes will
substitute the slots in the message template , forming the message that will be presented to the
user.

2.1. The OsiCon Case Study

During this case study a message generation system was implemented for the system OsiCon
[Spyropoulos 94b]. OsiCon Form Designer (OcForm/D) and OsiCon Form Filler (OcForm)
are platform independent GUI based form interfaces, that belong to VTT Finland [Honkela
94].

VTT used a Finnish morphological generator named FINGEN (FINnish GENerator).
FINGEN is a trademark of Lingsoft Ltd [Linsoft 94]. The input provided to FINGEN includes
the lexemes and their morphological feature specifications. In the actual input, the basic word
form and the features are separated with dashes. The output is the word in its proper form.
For example, some input-output pairs for the Finnish word 'katu' (a street) are as follows:

Input Output

katu-nom-sg "katu"

katu-gen-sg "kadun"

where the morphological feature name "nom" stands for nominative, "sg" for singular and
"gen" for genitive.

We will exemplify this approach using two messages generated by OsiCon using our message
generation system. This system is able to generate messages in Finnish using FINGEN.
However, apart from the messages in Finnish we also provide the corresponding messages in
English and Greek in order to demonstrate the potentials of extended message templates.

In order to support the generation of messages in Finnish, English and Greek we need three
different message catalogues of message templates and three different sets of morphological
rules one for each language.

The first message in the three languages appears as:

Tietojen lähettäminen Vangelikselle onnistui.

Sending information to Vangelis succeeded.

Ç áðïóôïëÞ ðëçñïöïñßáò óôï ÂáããÝëç ðÝôõ÷å.

The corresponding message templates in the three message catalogues are:

defTxt(SEND_INFORM,

"Tietojen lähettäminen %s(1,fin,all-sg) %s(2,fin,past-act-sg3).");

defTxt(SEND_INFORM,

"Sending information to %s(1,eng,nom-sg) %s(2,eng,past-act).");

defTxt(SEND_INFORM,

" Ç áðïóôïëÞ ðëçñïöïñßáò óôï %s(1,gre,acc-sg) %s(2,gre,past-act-
sg3).");

where SEND_INFORM is the message_template code and %s represents the slot that must be
filled by a lexeme with the morphological features included in the parentheses. The
morphological feature name "sg" stands for singular, "all" for the allative case, "nom" for the
nominative case, "past" for past tense, "act" for active voice, "sg3" for 3rd singular person and
"acc" for the accusative case. The language feature name "fin" stands for Finnish, "eng" for
English and "gre" for Greek. The numbers "1" and "2" specify the order of the slot fillers.

The OsiCon system is internationalised and has been designed for changing the locale4 of a
form dynamically [Honkela 94]. Let's say that OsiCon currently operates in Finnish. This
means that the Finnish message catalogue and the Finnish set of morphological rules are
active. The source code invokes Messages Manager giving the message template code
(SEND_INFORM) and the two slot fillers (lexemes). The first lexeme is the name "Vangelis"
and the second is the verb "onnistua" (succeed). Messages Manager invokes the
Morphological Generator using the function "m-generator" with the two lexemes and their
morphological features:

4 The collection of linguistic and cultural aspects for a specific language and region.

m-generator(fin,"Vangelis","all-sg")

m-generator(fin,"onnistua","past-act-sg3")

The Morphological Generator (FINGEN) inflects the lexemes, using the morphological rules
for Finnish, and returns them to Messages Manager. The inflected lexemes "Vangelikselle" and
"onnistui" respectively substitute the slots in the Finnish message template, forming the final
message.

The second message in the three languages appears as:

OVT-sanomassa ei ole lähettäjän osoitetta.

The EDI message does not contain the address of the sender.

Ôï EDI ìÞíõìá äåí ðåñéÝ÷åé ôç äéåýèõíóç ôïõ áðïóôïëÝá.

The corresponding message templates in the three message catalogues are:

defTxt(DATA_NOT_EXIST,

"OVT-sanomassa ei ole %s(2,fin,gen-sg) %s(1,fin,acc-sg).");

defTxt(DATA_NOT_EXIST,

"The EDI message does not contain the %s(1,eng,nom-sg) of the
%s(2,eng,nom-sg).");

defTxt(DATA_NOT_EXIST,

"Tï EDI ìÞíõìá äåí ðåñéÝ÷åé ôç %s(1,gre,acc-sg) ôïõ %s(2,gre,gen-
sg).");

where DATA_NOT_EXIST is the message template code and "gen" stands for the genitive
case. Note that in the Finnish message template the 2nd slot filler ("lähettäjän" which means
"the sender" in the accusative case) goes first, according to Finnish syntax rules. In the English
and Greek message templates the order of the slot fillers is followed.

 Again, the source code invokes Messages Manager giving the message template code
(DATA_NOT_EXIST) and the two slot fillers (lexemes). The first lexeme is "osoite"
(address) and the second is "lähettäjä" (sender). The function "m-generator" with the two
lexemes and their morphological features is invoked by the Morphological generator as
follows:

m-generator(fin,"osoite","acc-sg")

m-generator(fin,"lähettäjä","gen-sg")

The inflected lexemes "lähettäjän" and "osoitetta" respectively substitute the slots in the
Finnish message template, forming the final message.

2.2. Conclusions

The use of extended message templates is specifically suitable for synthetic languages such as
Finnish. Software developers and localisers need not to maintain all the message templates that
have morphological differences. It is enough to extend the message templates in order to
include calls to the appropriate morphological generation routines. Two features must be
included in each extended message template to achieve this: the language and the linguistic
specification. This approach is feasible since the components for its realisation are readily
available and can be exploited easily.

If the software application supports three different languages, then there will be three different
extended message templates, one for each language. It would be advantageous to create

message catalogues of internationalised message templates. That is, one message template for
all the languages supported. However, it is extremely difficult to specify such internationalised
message templates due to the large number of syntactic and morphological differences of the
various languages (we have already seen this in the simple messages of the previous section).
Note also that neither the extended nor the internationalised message templates can be used to
generate the same message in different ways according to the user knowledge, tasks, plans,
etc. In the following section we describe an advanced knowledge-based approach to achieve
such goals.

3. DYNAMIC ON-LINE GENERATION OF MESSAGES FROM AN
"INTERLINGUAL" KNOWLEDGE BASE

In our second case study NCSR "Demokritos" investigated the combined use of knowledge
bases and natural language generation techniques for on-line message generation in software
applications. We proposed an architecture (see Fig. 2) to generate messages on-line for
different languages from a common language-independent representation, as well as to express
the same message in a language in different ways, according to the user needs and the required
style.

Figure 2. Dynamic on-line generation of messages from an "Interlingual" Knowledge Base

"Interlingual"

Messages

Manager

NL Generation
Software Code

Core of the Internationalised Software Application

User

Software

Data

Knowledge Base

for language L1

Lexicon, Grammar

User-level

Specification

System

According to this architecture, we do not have to maintain a message catalogue. Messages are
generated dynamically using the knowledge for the software functions and components that is
stored in the language independent ("interlingual") KB. Each time a message must be
generated, the source code invokes the Messages Manager, which uses the current context of
the software along with the information of the KB to generate a language-independent
representation of the appropriate message. This representation is then passed to the NLG
system. The NLG system decides first on what sort of information from the language-
independent representation will be presented to the user. According to the user level of
experience, different information can be extracted from the KB (more detailed for the
inexperienced user and less detailed for a more experienced one). The NLG system then
translates this information into the user's language using the appropriate lexicon and grammar.

This approach requires a knowledge representation (KR) system for representing and
managing the knowledge stored in the KB, and an NLG system for generating messages from
the KB in the user's language and according to user experince, tasks, plans, etc.

Unfortunately, as it is the case with all knowledge-based approaches [Reiter 93], the
knowledge-based on-line message generation has disadvantages related to the:

• cost of setting up the KB. The set up of a KB involves the acquisition of knowledge
concerning the software functions and components as well as the effective organisation of
this knowledge into the KB. This is a costly process and thus the main reason for not using
KBs in practice.

• cost of managing the KB. The management of the KB involves the introduction of new
knowledge, the modification of the existing one, the consistency checks, as well as the
retrieval of knowledge. A complex knowledge representation formalism and an ineffective
organisation increases this cost significantly.

To reduce these costs we need an effective organisation of the knowledge and a simple KR
formalism. This remark along with our experience working with Terminological KBs (TKBs)
[Karkaletsis 95a,b,c] led us to investigate the use of TKBs in message generation [Karkaletsis
94,95c, Spyropoulos 94b]. TKBs are KBs containing terminological knowledge for the
software application, that is general domain knowledge (the ontology upon which the TKB is
built), knowledge on the software functions (functional knowledge) and knowledge on the
software components (structural knowledge) [Karkaletsis 95a,c]. We examined methods and
techniques that improve organisation of TKBs facilitating their set up and management. Our
efforts resulted in an innovative hybrid architecture for TKBs [Karkaletsis 95a,c], a simple
knowledge representation formalism [Karkaletsis 95c], an effective KR system [Karkaletsis
94,95c] and an effective method for setting up such a TKB [Karkaletsis 95b,c]. This
architecture is depicted in Fig. 3.

Figure 3. The architecture of the hybrid TKB

Software Functions Model

Concept-subconcept relation

Reference

Translation

. . .

Application Model

Language ModelLanguage Model

Domain Model

The main components of this architecture have the following characteristics:

(a)The Domain Model contains general domain knowledge. Domain entities are represented as
concepts (domain concepts).

(b)The Software Functions Model contains knowledge on software tasks. This is the
controlled and marked up textual descriptions of the software tasks and the steps needed to
perform them. These descriptions are extracted from the help texts, organised and labelled.
They are then translated in the application languages supported, forming a translation
memory. This translation memory is the Software Functions Model.

(c)The Application Model contains application-specific terminological knowledge.
Application-specific aspects are represented as concepts (application concepts) that are
classified under the concepts of the Domain Model, through the concept-subconcept
relation. Those concepts that correspond to a specific task of the software application
contain a reference to this task in the Software Functions Model. This reference is the task's
label.

(d)The Language Model contains language-specific terminological knowledge. We use local
concepts to express this knowledge. The local concepts are classified under the domain and
application concepts inheriting their language independent characteristics.

We decided to investigate the use of hybrid TKBs in dynamic on-line generation of diagnostic
messages. This work is presented in the next section.

3.1. The Style Manager Case Study

Style Manager of the HP VUE system was used to examine this approach in the second case
study. HP VUE 3.0 is a Windows Management System and User Interface, built by Hewlett
Packard over X11R5 Windows for the HP-UX 9.00 operating system series. Style Manager is
the application that enables users to change the appearance and behaviour of the HP VUE
screen colours, sound, keyboard, mouse, windows and sessions [Spyropoulos 94a].

To set up the hybrid TKB, we used the set up methodology of [Karkaletsis 95b,c]. According
to its principles we rewrote the Style Manager help text using the rules of a controlled English
language. The help text was then marked up using a prespecified set of mark up tags. This tag
set includes mark ups for tasks, glossaries terms, domain concepts, application-specific
concepts, generic and partitive relations, concepts attributes.

A controlled sample of Style Manager help text is depicted in Fig. 4. It concerns the tasks
required to "modify a palette".

Figure 4 Sample of Style Manager help text

12 Modify a palette.

121 Select a palette from the palettes_list.

122 Open the modify_dialog.

1221 Click a colour_button.

1222 Click the modify_button.

123 Adjust the settings.

124 Choose the ok_button in the modify_dialog.

125 Choose the ok_button in the colour_dialog

A part of the Application Model is depicted in Fig. 5. The concept "modify button" is part of
the "colour-dialogue" and is linked with the task 1.2.2.2 of the Software Functions Model (see
Fig. 4), through the "ref" attribute.

Figure 5 Part of the Application Model.

Style Manager
window

window

dialog

color keyboard

button

color keyboard

dialog dialog

button button

push
buttonpart part

add modify
button button

part part

Domain

Application

* These numbers correspond to tasks labels in the S/W function model

ref.

1.2.2.2 *

We implemented a prototype message generation system that generates diagnostic messages in
English and Greek, every time the user performs an unsuccessful task. The basic steps of
message generation, as they are realised by this prototype, are depicted in Fig. 6.

Figure 6 Generating Multilingual Error Messages

S/W User

Interface

Strategic

Component Component

Tacticalof Message

Generation
NL Generation System

Lexicon

Grammar

Application
Hybrid TKB

History List

User-level and

Style Specification

User-level and

Style Rules

successful

task

unsuccessful

task

user-level, style-type

Conceptual conceptual

message

message

Language

User

Dynamic

Message

Generation

message

Represent.
represent.

Messages Manager

(a) User level and style specification. Every time users start a new session with the software
application, they declare their level of expertise and the style of message they prefer.
According to the user level and style type, different messages for the same situation can be

generated. To exemplify this we defined four different user levels of expertise and four
different styles. The user levels with their descriptions are:

User-level Description

1 (more experienced) Information only on the task that should be executed previously, in order to perform
successfully the current task

2 Information on the previous task and the purpose of the unsuccessful current task

3 Information on the previous task and the unsuccessful current task.

4 (less experienced) Information on the previous task, the unsuccessful current task and its purpose.

The different styles with their descriptions are:

Style Description

s1 Imperative (e.g. Click a colour-button)

s2 Have to (e.g. You have to click a colour-button)

s3 Must (e.g. A colour-button must be clicked)

s4 Did not (e.g. You did not click a colour button)

(b) History-List update. The History-List maintains the information on the successfully
performed tasks. Every time the user performs a task (selects a menu option, presses a button,
etc.), the History-List is updated. Whenever a task cannot be performed, the Conceptual
Message Generation module is invoked.

Let's assume that the user is in the colour dialogue and wants to modify a colour of the
currently selected palette. As shown in Fig. 4, to modify a colour of the palette the user must
first select the palette (task 1.2.1.), then select the colour (task 1.2.2.1.) and then click the
modify-button to open the modify-dialogue (task 1.2.2.2.), where the appropriate adjustments
can be made (task 1.2.3.). Let's assume that the user has already selected the palette and
makes the mistake of clicking the modify-button without having selected a colour first. The
History-List will contain at that time the information that task 1.2.1. was performed. The
Conceptual Message Generation module will be activated to produce a message using the
information contained in the history list and the knowledge base.

(c) Dynamic Message Generation. The message that corresponds to the unsuccessful task is
not obtained from a message catalogue. It is generated dynamically using the information of
the KB and the History-List.

In the previous example, the error happened when the user attempted to click the modify-
button. The Conceptual Message Generation module uses this information to find the
corresponding concept in the Application Model. It finds the concept "modify-button" which
has the attribute "ref" with value "1.2.2.2" (see Fig. 5). It then searches in the Software
Functions Model for the task 1.2.2.2. This is the task "1.2.2.2. Click the Modify button.".
Based on the information from the History-List and the Software Functions Model, the
Conceptual Message Generation module detects the error. That is, it finds that the task
1.2.2.1. had to be performed first.

(d) Generation of the Message Conceptual Representation. This component takes the
diagnosis and translates it into the knowledge representation formalism. This representation is

passed to the NL Generation module in order to produce the final message to the language of
the user.

The conceptual representation of the diagnostic message of the previous example is:

precondition(1.2.2.,[1.2.2.1.,1.2.2.2])

which means that in order to perform successfully the current task (1.2.2.2) and finally the task
1.2.2., the user must perform first the task 1.2.2.1.

(e) Generation of the final message. The NL Generation module consists of two sub-
modules: the strategic and the tactical component. The strategic component takes as input the
conceptual representation of the message together with the user level and style and decides on
what will be displayed to the user. The tactical component takes this as input together with the
grammar and lexicon and for the target language and produces the final message.

Let's assume that the user declared that his user level is equal to 4 at the beginning of his
session with the software application. The strategic component will use this information in
order to decide the content of the final message. Since the user level is equal to 4, the message
must contain information on the previous task (1.2.2.1.), the unsuccessful current task
(1.2.2.2.) and the final task (1.2.2.). After the content determination, the strategic component
has to decide on the message style. This decision is based on the style declared by the user at
the beginning of his session. If the user selects the style s1, the strategic component decides
that the message will be in imperative.

The tactical component takes as input the previous, the current and the final task which must
be included in the final message. It searches for the translations of these tasks in the translation
memory of the Software Functions Model, according to the user's language. From these
translations, the tactical component extracts the verbs and noun phrases it needs for the final
message. The translations of the tasks in Greek and the words extracted are shown below:

TASK Greek Translation Verb Noun Phrase

previous task 1.2.2.1 ÐáôÞóôå ôï êïõìðß-÷ñþìá ðáôþ ôï êïõìðß-÷ñþìá

current task 1.2.2.2 ÐáôÞóôå ôï êïõìðß-ôñïðïðïßçóç ðáôþ ôï êïõìðß- ôñïðïðïßçóç

final task 1.2.2 Áíïßîôå ôï äéÜëïãï-ôñïðïðïßçóç áíïßãù ôï äéÜëïãï-ôñïðïðïßçóç

Using these verbs and noun phrases, the tactical component activates the grammar rule for
imperatives, converts the words in the appropriate morphological forms (using the
morphological rules of the language) and generates the final message. Note that the same
representation formalism was used for both English and Greek grammars and lexicons.

For example, the tactical component will generate the following messages for the four
different styles and for user-level equal to 4.

Style Message in English Message in Greek

s1 Click a colour-button first and then click the
modify-button to open the modify-dialog.

Áñ÷éêÜ ðáôÞóôå Ýíá êïõìðß-÷ñþìá êáé óôç óõíÝ÷åéá
ðáôÞóôå ôï êïõìðß-ôñïðïðïßçóç ãéá íá áíïßîåôå ôï
äéÜëïãï-ôñïðïðïßçóç.

s2 You have to click a colour-button first and then
click the modify-button to open the modify-
dialog.

Áñ÷éêÜ ðñÝðåé íá ðáôÞóåôå Ýíá êïõìðß-÷ñþìá êáé
óôç óõíÝ÷åéá íá ðáôÞóåôå ôï êïõìðß-ôñïðïðïßçóç ãéá
íá áíïßîåôå ôï äéÜëïãï-ôñïðïðïßçóç.

s3 A colour-button must be clicked first. Then,
click the modify-button to open the modify-
dialog.

Áñ÷éêÜ ðñÝðåé íá ðáôçèåß Ýíá êïõìðß-÷ñþìá. Óôç
óõíÝ÷åéá ðáôÞóôå ôï êïõìðß-ôñïðïðïßçóç ãéá íá
áíïßîåôå ôï äéÜëïãï-ôñïðïðïßçóç.

s4 You didn't click a colour-button. Click a colour-
button first and then click the modify-button to
open the modify-dialog.

Äåí ðáôÞóáôå Ýíá êïõìðß-÷ñþìá. Áñ÷éêÜ ðáôÞóôå
Ýíá êïõìðß-÷ñþìá êáé óôç óõíÝ÷åéá ðáôÞóôå ôï
êïõìðß-ôñïðïðïßçóç ãéá íá áíïßîåôå ôï äéÜëïãï-
ôñïðïðïßçóç.

3.2. Conclusions

The advantages offered by the combination of KR and NLG techniques according to [Reiter
93] include maintainability, multilinguality, enforcement of syntax and style rules and
adaptabilty. The investigation of such an approach for the on-line dynamic generation of
messages in software applications led us to the same conclusions:

• Maintainability . Lower cost for the development of a new version and the creation of new
local versions. Message generation in these versions would involve the update of the KB
and the lexicons of the local languages.

• Multilinguality . Since the KB is language-independent, then the NLG system can generate
the same message in more than one language using the grammar, lexicon and
morphological rules for the supported language.

• Control of the style and content of the messages. Message generation from an NLG
system permits the enforcement of specific rules for syntax, content and style.

• Adaptability. Messages can be adapted according to the user level of experience, user
tasks and plans. This adaptation concerns the use of different syntax, vocabulary, and more
or less detail in the message content.

On the other hand the disadvantages concerning the cost for setting up and managing the KB
are tackled through the use of the hybrid TKB that contains the structural and functional
knowledge of the software application [Karkaletsis 94,95a,95b].

4. SUMMARY AND FUTURE WORK

In the framework of the GLOSSASOFT project we investigated on-line message generation in
software applications. We examined two new approaches in two separate case studies. The
first approach concerned the use of extended message templates. A message generation system
for Finnish was developed for the system OsiCon. The message templates were extended to
include two features: the language and the morphological features of the lexemes that will
substitute the slots of the message template. We used the morphological generator FINGEN
for inflecting the lexemes according to their morphological features. Such an approach is very
useful especially for synthetic languages since it reduces the number of entries in the message
catalogues, improving their organisation and facilitating the localisation of messages.

Two interesting extensions of this work that we would like to investigate in the future are the
enhancement of the message generation system to generate phrasal constituents and the
development of a translation memory system of extended message templates. The first
extension will improve even more the organisation of message catalogues, while the second
one will help technical writers to express messages uniformly across new software versions
and products.

It would be advantageous to generate the same message in different languages and ways
according to the user experience, tasks, plans, etc. The generation of messages from an
"interlingual" KB that contains the functional and structural knowledge of the software
application is an approach that can help to achieve these goals. We examined this approach in
the second case study. A message generation system for English and Greek was developed for
the Style Manager of the HP VUE system. This system does not require to maintain message
catalogues. Messages are generated dynamically using the information from the KB and the
information on the application context (i.e. tasks performed, current position at the user
interface). The message generation system is able to generate diagnostic messages in English
and Greek using an NLG system along with the corresponding lexicons and grammars. It is
also able to adapt the messages according to a set of user level and style rules that we
specified in order to exemplify our approach. To reduce the cost of this knowledge-based
approach we used a hybrid TKB, a simple and effective KR system and a cost-effective
method for setting up TKBs.

We intend to evaluate the performance of the message generation system in a complete
software application. This will probably lead us to modify the KR system, the method of TKB
set up and the NLG system in order to make the message generation system more robust.
Further we are going to investigate the effectiveness of this approach for the generation of
other types of messages apart from the diagnostic ones, as well as for the introduction of other
languages in the NLG system. Another issue that needs to be investigated is the specification
of an intelligent user modelling. We also believe that this approach can be used for the
generation of multilingual interfaces in software applications.

REFERENCES

[Honkela 94] Honkela, T., Kalliomaki, S., Lagus, K. 1994. GLOSSASOFT Deliverable 14.1
"VTT Case Study", v1.0, July 1994.

[Linsoft 94] Linsoft Ltd., 1994. "FINGEN Reference Manual".

[Karkaletsis 94] Karkaletsis, E., Spyropoulos, C.D., Vouros, G. 1994. A Knowledge-based
Approach for Organising Terminological Data and Generating Messages in Software
Applications. In Proceedings of the "Language Engineering on the Information Highway"
Workshop, Santorini, 26-30 September 1994.

[Karkaletsis 95a] Karkaletsis, E., Spyropoulos, C.D., Vouros, G. 1995. The Use of
Terminological Knowledge Bases in Software Localisation. In Lecture Notes of Artificial
Intelligence (LNAI), no 898, pp. 175-188.

[Karkaletsis 95b] Karkaletsis, E., Spyropoulos, C.D., Vouros, G., Halatsis, C. 1995.
Organisation and Exploitation of Terminological Knowledge in Software Localisation. In
TermNet News - Journal of the International Network for Terminology, no 48, pp. 42-48.

[Karkaletsis 95c] Karkaletsis, E., 1995. Terminological Knowledge Bases and their
Exploitation in Multilingual Software Applications. Ph.D. Thesis. Department of
Informatics, University of Athens, March 1995 (in Greek).

[Reiter 93] Reiter, E., Mellish, C., 1993. Optimising the Costs and Benefits of Natural
Language Generation. In Proceedings of IJCAI 1993, pp. 1164-1169.

[Spyropoulos 93] Spyropoulos, C.D., Karkaletsis, E., Vouros, G., 1993. GLOSSASOFT,
Deliverable 4.1 "Guidelines for Linguistics for Interaction Interlinguality", v1.0, December
1993.

[Spyropoulos 94a] Spyropoulos, C.D., Karkaletsis, E., Kokkotos, S., Vouros, G., 1994.
GLOSSASOFT, Deliverable 8.1 "HP Case Study", v1.0, July 1994.

[Spyropoulos 94b] Spyropoulos, C.D., Vouros, G., Kokkotos, S., Karkaletsis, E., Honkela,
T., Lagus, K., 1994. GLOSSASOFT, Deliverable 10.1. "Guidelines for Linguistics", v1.0,
December 1994.

