Investigating On Line Message Generation
in Software Applications:
The GLOSSASOFT: Results

Constantine D. Spyropoulos, Evangelos A. Karkaletsis, George A. Vouros,
Timo Honkela?, Krista Lagus*, and Aarno Lehtola*

Institute of Informatics & Telecommunications,
National Centre for Scientific Research (N.C.S.R.) "DEMOKRITOS",
153 10 Aghia Paraskevi, Athens, Greece
Tel: +301 6510310, +301 6513110 ext.520, Fax: +301 6532175,
E-mail: costass@iit.nrcps.ariadne-t.gr

*VTT Information Technology
PB 1201, FIN - 02044 VTT, Finland
Tel: +358 0 456 6032, Fax: +358 0 456 6027, E-mail: aarno.lehtola@vtt.fi

Abstract. This paper presents the results of BeOSSASOFT project irthe area of on linanessage
generation insoftware applications.First, it presents the existing approac@sgeneratingmessages and
discussesheir drawbacksThentwo newapproaches aiming to tackle thetrmwbacksare investigated. The
first concerns with theise of extended message templated the seond one withthe use of a language
independent knowledgbase that containsknowledge aboutthe structureand functions of a software
application. Thewo approaches are presented ustage studies examplesid theircostsand benefits are
analysed.

1. INTRODUCTION

The adaptation of a software applicationtbe needs and requirements lofal markets,

which is called localisation, is a veiypportant consideration if compani@ssh to survive the

fierce competition irthe growing markets. Software products must "speak"ahgulage of

the users. On the other hand, the aim of internationalisation, is to create software products that
can be easily localised to several markets.

A major part of softwardocalisation concernthe adaptation ofmessages tthe needs and
requirements of théocal markets. In an internationalisedftware application messages are
stored,separately fronthe source code of the software,message catalogues. In tinay,
the localisation of message®es notnvolve the rewriting of the softwareode butonly the
adaptation of the message catalogue.

The most common approach for organising messages in a software applicét®ruse of
canned messages. Since canned messagefxed, software developers have toaintain

1 GLOSSASOFT is aproject partially supported by the EU under tbentract LRE-61003 togethewrith Open
University (GB), N.C.S.R. "Demokritos" (GR), Claris (IR), HP Hellas (GR), VTT (Fi), and BULL (Fr).

2 Onleave at Helsinki University of Technology

separate entries in timessage catalogue for messages midmy similaritiesThis drawback
can be tackled using message templates. Thesanessages with slotashich can be
substituted by actualalues depending othe context inwhich each message generated
[Spyropoulos 93]. Foexample, instead of usirfgur messages to announce that one of the
four disk drives of the system is damaged, we canhesmessage template "Disk <number of
disk> is damaged". This message template can alssdzkto announce that "Disks 1, 2 are
damaged” if a morphological generation routine called to makethe appropriate
morphological adaptations. The use of these "extended" message templasgeciglly
important for languages witmany inflectionalword forms (synthetic languages, such as
Finnisi®). There vill be no need tomaintainseparate entries inside theessage catalogue for
the messages that have only different word forms.

The use of extended message templates impribve®rganisation omessage catalogues.
However, westill have to maintain differenéxtended message templates tioe different
languages supported. It would help a lot if we could generatadébsages faall the different
languages fronone common language-independgimterlingual”) representation bgalling
the appropriate syntactic and morphological generation routines.

These problems motivated us to investigtte on-line message generation software
applications. The paper describteg different approachesxamined inthe context of two
restricted case studies of the GLOSSASOFT project [Spyropoulos 94bfir3thepproach
considers theombineduse of message templates and morphological generation, that is the
use of extended message templates. The second approach coth&ddysamic on-line
generation of messages from a language independent representation using knoadedge
and natural language generation techniques.

Section 2 presents the method for generatimgssages in a software applicatiogsing
extended message templates. Section 3 desdiifgesnethod for generatingultilingual
diagnostic messages by exploiting knowledgehef software applicatiorFinally, section 4
summarises the results of our work and describes our future plans.

2. ON-LINE GENERATION OF MESSAGES USING EXTENDED MESSAGE
TEMPLATES

In our first case study we investigatélie use of extendemiessage templates. Vipeoposed
an architecture for internationalised software applications (see Fig. 1) that is bakedusa
of message catalogues of extended message templateshengse of morphological
generation routines.

3 The complexity of Finnish morphologycan be described by statirtigat a singlenoun has almost 2000 potential

inflectional word forms and each verb over 10000

Figure 1. On-line generation of messages using extended message templates

Us;r Software Code Messages Morphologigal
) Generator

Morphological Ryl
for language

Core of the Internationalised Softtware Applitation

Message Catalogye
for language

According to this architecturéhe core of the softwam@ntains the souraeode, the software
dataand the Messages Manager. Thessage catalogue withe extendedhessage templates
for the language currentupported (L1) is outside the core of the softwapplication. Two
features arancluded in each extended message tempthe:language and thienguistic
specification (morphological feature®)r the lexemes that W substitute the slots in the
message template. Theasic idea in thisrchitecture is the use of a Morphological Generator
for inflecting the set of lexemes to their proper forms.

(message code, slot fillgrs) Manager
N

The software source code asks for the appropriagsesage fronthe Messages Manager
giving the message templateode and the sldillers. The Messages Manager retrieves the
corresponding message template and seheddexemes (fromthe slotfillers) and their
morphological features (frorthe message template) the Morphological Generator. The
Morphological Generatanflects the lexemes to theiproper formsusingthe morphological
rules for language L1, and retuthem tothe Messages Manager. Tinflected lexemesuill
substitute the slots in thmessage template , formitige message thatilvbe presented to the
user.

2.1. The OsiCon Case Study

During this case study a message generation systermmpisnentedor the system OsiCon
[Spyropoulos 94b]. OsiCon Form Designer (OcForm/D) and OsiCon Fdien (©cForm)
are platform independei@Ul basedform interfaces, that belong 8TT Finland [Honkela
94].

VTT used a Finnish morphological generator named FINGEN (FINnish GENerator).
FINGEN is a trademark of Lingsoft Ltd [Linsoft 94]. Thmput provided to FINGENNhcludes
thelexemes and their morphologidelature specifications. lime actual input, thbasicword
form andthe features are separated with dashes.olitut is the word ints properform.
For example, some input-output pairs for the Finnish word 'katu' (a street) are as follows:

Input Output

katu-nom-sg "katu"

katu-gen-sg "kadun"

where themorphological featurename "nom"stands fornominative, "sg"for singular and
"gen" for genitive.

We will exemplifythis approaclusingtwo messages generated by Osi@singour message
generation system. This systemable to generate messages kinnish using FINGEN.
However, aparfrom the messages ifinnish wealso provide the correspondingessages in
English and Greek in order to demonstrate the potentials of extended message templates.

In order to support thgeneration of messagesHimnish, Englishand Greek we need three
different message catalogues of message templatethraedlifferent sets ofmorphological
rules one for each language.

The first message in the three languages appears as:
Tietojen l&ahettdminen Vangelikselle onnistui.
Sending information to Vangelis succeeded.

H amooToAh mAnpoypopias oTo BayyéAn méTtuye.

The corresponding message templates in the three message catalogues are:
defTxt(SEND_INFORM,
"Tietojen lahettaminen %s(1,fin,all-sg) %s(2,fin,past-act-sg3).");
defTxt(SEND_INFORM,
"Sending information to %s(1,eng,nom-sg) %s(2,eng,past-act).");
defTxt(SEND_INFORM,

"H amootoAh mAnpoyopias oto %s(l,gre,acc-sg) %s(2,gre,past-act-
$g3).");

where SEND_INFORM is the message_template code and %s represents the slot that must be
filled by a lexemewith the morphological features included ithe parentheses. The
morphological featureame "sg'stands for singulatall" for theallative case, "nom" for the
nominative case, "past” for past tense, "act" for active voice, "sg3rdi@mingular person and

"acc" for the accusative case. The language featamge "fin" stands forFinnish,"eng" for

English and "gre" for Greek. The numbers "1" and "2" specify the order of the slot fillers.

The OsiCon system is internationalised and has been ded@gnelngingthe localé* of a

form dynamically [Honkela 94]. Let'ssay that OsiCon currentlgperates inFinnish. This

means thathe Finnish message catalogue atite Finnish set of morphological rules are
active. The source codmvokes Messages Manageiving the message templateode

(SEND_INFORM) and théwo slotfillers (lexemes). The firsdexeme isthe name "Vangelis"
and the second is the verb "onnistua" (succeed). Messages Mamxg&es the
Morphological Generatousing the function "m-generator” witlthe two lexemes and their
morphological features:

4 The collection of linguistic and cultural aspects for a specific language and region.

m-generator(fin,"Vangelis","all-sg")

m-generator(fin,"onnistua","past-act-sg3")
The Morphological Generator (FINGEN)flects the lexemes, usinghe morphological rules
for Finnish, and returns them to Messages Manager. The inflected lexemes "Vangelikselle" and
"onnistui" respectively substitutiae slots in thd=innishmessage template, forminige final
message.
The second message in the three languages appears as:

OVT-sanomassa ei ole lahettajan osoitetta.

The EDI message does not contain the address of the sender.

Oi EDI iPidi4 4&i danéY+&é 6¢ 4éayedioc 6id 4dI60T8YA.
The corresponding message templates in the three message catalogues are:

defTxt(DATA_NOT_EXIST,

"OVT-sanomassa ei ole %s(2,fin,gen-sg) %s(1,fin,acc-sg).");
defTxt(DATA_NOT_EXIST,

"The EDI message does not contain the %s(1,eng,nom-sg) of the
%s(2,eng,nom-sg).");

defTxt(DATA_NOT_EXIST,

"Ti EDI ibi6ia aai o&néy+aé 0c¢ %s(1,gre,acc-sg) 0id %s(2,gre,gen-
s9).");
where DATA_NOT_EXIST is thenessage templaiede and'gen" stands for thgenitive
case. Mte that in theFinnishmessage templatee 2nd slofiller ("lahettgjan" whichmeans
"the sender" in the accusative case) goes first, accordifignishsyntax rules. Ihe English
and Greek message templates the order of the slot fillers is followed.

Again, the source codenvokes Messages Managgiving the message templateode
(DATA_NOT_EXIST) and thetwo slot fillers (lexemes). The firsiexeme is"osoite"
(address) and the second is "lahettaja" (sender).fdinetion "m-generator” witithe two
lexemes and their morphologicéatures is invoked by the Morphologicgénerator as
follows:

m-generator(fin,"osoite","acc-sg")
m-generator(fin,"l&hettaja","gen-sg")

The inflectedlexemes "lahettgjan" antbsoitetta” respectively substitut¢he slots in the
Finnish message template, forming the final message.

2.2. Conclusions

The use of extended message templatsepasifically suitabldor synthetic languages such as
Finnish. Software developers and localisers need not to maintain all the message témaplates
have morphological differences. It is enough to extdfrelmessage templates order to
include calls tothe appropriatemorphological generation routine$wo features must be
included in each extended message template to achieveéhthilanguage and tHeaguistic
specification. Thisapproach is feasiblsince the components for itsealisationare readily
available and can be exploited easily.

If the softwareapplicationsupports threedifferent languages, thehere will be threedifferent
extended message templates, one for each language. It would be advantagzeaseto

message catalogues of internationalised message templadés, one message template for

all thelanguagesupported. However, it Bxtremely difficult to specifsuch internationalised
message templates dueth@ largenumber of syntactic and morphological differences of the
various language@ve have already seen thistine sinple messages dhe previous section).
Note also that neither the extendedr theinternationalised message templates can be used to
generate theame message in different ways accordingheouser knowledge, taskgslans,

etc. In thefollowing section we describe an advanced knowledge-bagprbach taachieve
such goals.

3. DYNAMIC ON-LINE GENERATION OF MESSAGES FROM AN
"INTERLINGUAL" KNOWLEDGE BASE

In our second case study NCSR "Demokritos” investigatecctmebineduse of knowledge

bases and natural language generation techniques4ore message generationsaftware
applications. We proposed an architecture (see Fig. 2) to generate messdigesfor

different languages from a common language-independent representatveti ,assto expess

the same message in a language in different ways, according to the user needs and the required
style.

Figure 2. Dynamic on-line generation of messages from an "Interlingual” Knowledge Base

% User-level

Specification
User
< Software Code Messages NL Generation

Manager System

Software
Data

Core of the Internationalised Softwgre Application

"Interlingual
Knowledge Ba

According to this architecture, we dot have to maintain a messacggtalogue. Messages are
generatedlynamicallyusingthe knowledge for the softwafenctions and components that is
stored in the laguage independent ("interlingual”) KB. Each time a message must be
generated, the source cadeokesthe Messages Managavhich uses the current context of
the software along with thenformation of the KB to generate #anguage-independent
representation of the appropriate messadmes representation is then passed to the NLG
system. The NLG system decides first ohatv sort ofinformation from the language-
independent representationlivbe presented to the user. According to the uUseel of
experience, different information can lextractedfrom the KB (more detailed for the
inexperienceduser andless detailedor a more experiencedne). The NLGsystem then
translates this information into the user's language using the appropriate lexicon and grammar.

Lexicon, Grammar
for language L1

This approach requires a knowledge representation (K¥y&tem for representing and
managinghe knowledgestored in theKB, and an NLG systerfor generating messagésm
the KB in the user's language and according to user experince, tasks, plans, etc.

Unfortunately, as it is the case witll knowledge-based approaches [Reifi8], the
knowledge-based on-line message generation has disadvantages related to the:

+ cost of setting up the KB The set up of a KBnvolvesthe acquisition of knowledge
concerning the softwarf@nctions and components a&ll asthe effective organisation of
this knowledge intahe KB.This is a costlyprocess and thus theam reason fomot using
KBs in practice.

« cost of managing the KB The management dhe KB involvesthe introduction of new
knowledge, themodification ofthe existing one, theconsistency checks, agell as the
retrieval of knowledge. A complex knowledge representdtiamalismand anineffective
organisation increases this cost significantly.

To reduce these costs weed an effective organisation thie knowledge and a spie KR
formalism. Thisremark along withour experience working with Terminological KBs (TKBs)
[Karkaletsis 95a,b,dpd us to investigatthe use of TKBs irmessage generation [Karkaletsis
94,95c¢, Spyropoulos 94b]. TKBs akBs containing terminological knowledg®r the
software application, that is gened@imain knowledgéthe ontology upomnvhich the TKB is
built), knowledge on the softwarfenctions (functional knowledge) and knowledge on the
software components (structural knowledge) [Karkal&5is,c]. Weexaminedmethods and
techniques that improve organisation of TKBs facilitating teeir upand management. Our
efforts resulted in an innovativieybrid architecture for TKBs [Karkaletsi85a,c], asimple
knowledge representatidormalism [Karkaletsis95c], aneffective KR system [Karkaletsis
94,95c] and areffective methodfor setting up such a TKB [Karkaletsis 95b,d]his
architecture is depicted in Fig. 3.

Figure 3. The architecture of the hybrid TKB

Software Functions Model Domain Model

Application Model

AN
/ N
/ \

Language Model c e Language Model

Concept-subconcept relation
L Reference
. Translation

The main components of this architecture have the following characteristics:

(a)TheDomain Modelkontains general domain knowledge. Domain entities are represented as
concepts (domain concepts).

(b)The Software Functions Modetontains knowledge on software taskhis is the
controlled and marked up textual descriptions of the software tasks and the steps needed to
perform them. These descriptions are extratitad the helptexts, organised ardbelled.

They are then translated in thepplication languagesupported,forming a translation
memory. This translation memory is the Software Functions Model.

(c)The Application Model contains application-specific terminological knowledge.
Application-specificaspects are represented as concepts (application concepts) that are
classified under the concepts of thBomain Model,through the concept-subconcept
relation. Those concepts that correspond tspecific task of the softwarepplication
contain a reference to this task in the Software Functions Model. This reference is the task's
label.

(d)The Language Modetontains language-specific terminological knowledge. Welacss
concepts to expresiis knowledge. The localoncepts arelassifiedunder thedomain and
application concepts inheriting their language independent characteristics.

We decided to investigathe use ohybrid TKBs in dynamic on-linegeneration of diagnostic
messages. This work is presented in the next section.

3.1. The Style Manager Case Study

Style Manager othe HP VUEsystem was used &xamine thisapproach in the second case
study. HP VUE 3.0 is &vindows Management System and User Interfaodti by Hewlett
Packard over X11R®%/indows forthe HP-UX 9.00 operatingystem series. Style Manager is
the application that enablagsers to change the appearance laglthviour ofthe HP VUE
screen colours, sound, keyboard, mouse, windows and sessions [Spyropoulos 94a].

To set up théaybrid TKB, we used the set up methodology[ibarkaletsis 95b,c]. According
to its principles werewrote theStyle Manager help text usitige rules of a controlleBEnglish
language. Théelp textwas then marked up using a prespecifietiofmark uptags.This tag
set includes markups for tasks, glossaries terndpmain concepts,application-specific
concepts, generic and partitive relations, concepts attributes.

A controlled sample of StylManager help text islepicted in Fig. 4. It concerns the tasks
required to "modify a palette”.

Figure 4 Sample of Style Manager help text

12 Modify a palette.

121 Select a palette from the palettes-list.

122 Open the modify-dialog.

1221 Click a colour-button.

1222 Click the modify-button.

123 Adjust the settings.

124 Choose the ok-button in the modify-dialog.
125 Choose the ok-button in the colour-dialog

A part of theApplication Model is depicted in Fig. 5. Tlencept'modify button” is part of
the "colour-dialogue" and is linked with the telsR.2.2 of the SoftwarBunctions Model (see
Fig. 4), through the "ref" attribute.

Figure 5 Part of the Application Model.

tyle Manage
window

* These numbers correspond to tasks labels in the S/W function model

We implemented a prototype message generation system that generates diagnostic messages in
English andGreek, every timethe user performs aunsuccessfutask. Thebasic steps of
message generation, as they are realised by this prototype, are depicted in Fig. 6.

Figure 6 Generating Multilingual Error Messages

User-level and
Style Rules

user-level, style-type
% User-level and

Style Specification

r Messages Manageg, - ’7 o

User ‘ NL Generation System ‘
‘ Generation ‘

unsuccessful | Dynamic | messag ‘

% S/W User | f Message Strategic Tactical %
Message message

Interface] task [Conceptual ‘conceptual Component Component ‘
Generation represent. ‘
Represent. ‘

|

|
L -

succespful
task ‘ @ ‘ Application ‘
Hybrid TKB

‘ o ‘ ‘ Language ‘
| | |]

(a) User leveland style specification.Every timeusersstart anew session witlthe software
application, they declare thelevel of expertise and thestyle of message they prefer.
According to the usedevel and styletype, different messagder the same situation can be

generated. Tcexemplify this we defined dur different user levels of expertise and four
different styles. The user levels with their descriptions are:

User-level Description

1 (more experienced) Informati@mly onthe task thashould be executed previously, in order to perform
successfully the current task

2 Information on the previous task and the purpose of the unsuccessful current task

3 Information on the previous task and the unsuccessful current task.

4 (less experienced)| Information on the previous task, the unsuccessful current task and its purpose.

The different styles with their descriptions are:

Style Description
sl Imperative (e.g. Click a colour-button)
s2 Have to (e.g. You have to click a colour-button)
s3 Must (e.g. A colour-button must be clicked)
s4 Did not (e.g. You did not click a colour button)

(b) History-List update. The History-Listmaintainsthe information onthe successfully
performed tasks. Every tintee user performs a task (selecta@nuoption, presses a button,
etc.), theHistory-List is updatedWhenever atask cannot be performed, the Conceptual
Message Generation module is invoked.

Let's assume thahe user is in the colour dialogue and wantsmiodify a colour of the
currently selected palette. As shown in Fig. 4mimdify a colour ofthe palette the usenust
first selectthe palette (task 1.2.1.), then select the colour (task 1.2dhd.}henclick the
modify-button to open theodify-dialogue(task 1.2.2.2.), where the appropriatustments
can be maddtask 1.2.3.). Let'sassume thathe userhas already selectatie palette and
makesthe mistake of clickingthe modify-button withouhaving selected a colour first. The
History-List will contain at that timehe information thattask 1.2.1. was performed. The
Conceptual Message Generation modulk lve activated to produce message using the
information contained in the history list and the knowledge base.

(c) Dynamic Message GeneratioriThe message that correspondsh®unsuccessfuiask is
not obtained from a message catalogue. It is geneteaimicallyusingthe information of
the KB and the History-List.

In the previousexample,the errorhappened whethe user attempted tclick the modify-
button. The Conceptual Message Generatioodule uses this information tbnd the
corresponding concept in tiAgpplication Model. Itfinds the concept "modify-buttonivhich
hasthe attribute "ref" withvalue "1.2.2.2" (see Fig. 5). Ithen searches in the Software
Functions Model for théask 1.2.2.2This isthe task "1.2.2.2Click the Modify button.".
Based on thanformation fromthe History-List and the Software Functions Model, the
Conceptual Message Generation moddégects the error. Thas, it finds thatthe task
1.2.2.1. had to be performed first.

(d) Generation of the Message Conceptual Representatioithis componentakes the
diagnosis and translates it irttte knowledge representatiormalism. Thisrepresentation is

passed to the NL Generatiamodule inorder to produce thnal message tthe language of
the user.

The conceptual representation of the diagnostic message of the previous example is:
precondition(1.2.2.,[1.2.2.1.,1.2.2.2])

which means that in order to perform successfully the current task (1.2.2.2) and finally the task
1.2.2., the user must perform first the task 1.2.2.1.

(e) Generation of the final message.The NL Generation module consists t@fo sub-
modules: the strategic and the tactical component. The strategic component takes as input the
conceptual representation of tmessagéogethemwith the useteveland style and decides on

what will be displayed to the user. The tactical component takes this asogeilterwith the
grammar and lexicon and for the target language and produces the final message.

Let's assume thahe user declared théis userlevel isequal to 4 at théeginning of his
session withthe software application. The strategic componeiiit wge this information in
order to decide the content of the final message. Since thkewsdsequal to 4, thenessage
must contain information orthe previous task1.2.2.1.), theunsuccessfulcurrent task
(1.2.2.2.)and thefinal task (1.2.2.)After the content determination, the strategic component
has to decide othe message style. This decision is basedh&style declared byhe user at
the beginning of hisession. If the user selects gtgle s1, the strategic componea¢cides
that the message will be in imperative.

The tactical component takes as input the previous, the current afmthtii@sk which must

be included in the final message. It searches for the translations of these tasks in the translation
memory ofthe Software Functions Model, according to the user's language. From these
translations, the tactical component extracts the verbs and noun phrases it needénfdr the
message. The translations of the tasks in Greek and the words extracted are shown below:

TASK Greek Translation Verb Noun Phrase
previous task | 1.2.2.1 Dadb46a 61 &iGidR-+ipia d0aop 01 €idioR-+fipia
current task 1.2.2.2 Dadb66a 07 EiGidR-6MT818TRCOC 0aop O1 €1010R- OATATOIRCOC
final task 1.2.2 ATiR168 67 46UEiai-0fi8idIRcoc aiiRan | o aéUsiaI-6AisidiRcoc

Using these verbs and noun phrases, the tactical component activatgsirtivear rule for
imperatives, convertghe words in the appropriatenorphological forms (using the
morphological rules othe language) and generates fimal message. bte that thesame
representation formalism was used for both English and Greek grammars and lexicons.

For example,the tactical component ilv generate thdollowing messagedor the four
different styles and for user-level equal to 4.

Style Message in English Message in Greek

sl Click a colour-buttorfirst and then click the Af+ééU 3a6P6d& Yia eitidR-+fipia éaé 6o¢ 66iY+aéa
modify-button to open the modify-dialog. daoboa o1 Ei6iIsR-0MidIdIRcOe AéA 4 ARTAGA Oi
aeUgiai-omivioiteoc.

s2 You have to click a colour-buttdinst and then| Afi+=ééU 8fY3aé ia da0P6A0A Yia &ididR-+fipia e&é
click the modify-button to operthe modify- | 66¢ 66iY+aéa ia 3a0P6A0A O &16idR-OMIBIBIRCOC AéA
dialog. ia 4iiR1a6a 67 46 UETAI-0M18181R¢OC.

s3 A colour-button must be clickefirst. Then,| Afi+=é8U 8iYdaé ia 8a0ceaR Yia &ididR-+fipia. Odc

click the modify-button to opernthe modify- | 66iY+8é4 8a0P6O& 67 éI6idR-OATSIBIRCO; Aéa 1A
dialog. AiTRT&04 61 46UEiAi-0RidiaRGOC.

s4 You didn't click a colour-button. Clickamlour- | A&i 346b6&d& Yia éi6idR-+fipia. Af+éeU 84dP06a
button first and then clickhe modify-button to| Yia éi6idR-+fipia @aé 60¢ 63iY+&éa BAaOPGda OF
open the modify-dialog. €iBIOR-OAIBIGIRGO; déa ia aiiRTada o aeUe&ial-
ONTOTAIRCOC.

3.2. Conclusions

The advantages offered by tbembination of KR and NLG techniques according to [Reiter
93] include maintainability, multilinguality,enforcement of syntax and style rules and
adaptabilty. The investigation of such an approachtheron-line dynamicgeneration of
messages in software applications led us to the same conclusions:

« Maintainability . Lower cost for the development of a new version and the creation of new
local versions. Message generation in these versions wwdbtve the update of the KB
and the lexicons of the local languages.

« Multilinguality . Since the KB is language-independent, then the Bjystem can generate
the same message in more thame languageusing the grammar,lexicon and
morphological rules for the supported language.

« Control of the style and content of themessagesMessage generation from an NLG
system permits the enforcement of specific rules for syntax, content and style.

« Adaptability. Messages can be adapted according to the leggr of experience, user
tasks and plan3his adaptation concerns the useddferent syntax, vocabulary, and more
or less detail in the message content.

On the othehandthe disadvantages concerning tost forsetting up anagnanaginghe KB
are tackled through the use of thgbrid TKB that contains the structural arfidnctional
knowledge of the software application [Karkaletsis 94,95a,95b].

4. SUMMARY AND FUTURE WORK

In the framework of the GLOSSASOFT project we investigatetine message generation in
software applications. Wexaminedtwo new approaches itwo separate case studies. The

first approach concerned the use of extended message templates. A message generation system
for Finnishwas developed for thgystem OsiCon. The message templatese extended to

include two features: the language and tm®rphological features dhe lexemes thatill

substitute the slots of thmessage template. We usts@ morphologicalgenerator FINGEN

for inflecting the lexemesaccording to their morphological features. Such an approanyis

useful especiallyor synthetic languagesnce itreduces th@umber of entries ithe message
catalogues, improving their organisation and facilitating the localisation of messages.

Two interesting extensions of thigork that wewould like to investigate ithe future are the
enhancement othe message generation system generate phrasal constituents and the
development of a translation memory system of extended messageates. Thefirst
extension W improve even mor¢he organisation oinessage catalogueshile the second
one wil help technicalwriters to express messagasformly across new softwareersions
and products.

It would be advantageous to generate shene message in different languages aagls
according to the user experience, tasks, plans, etc. The generatioessdges from an
“interlingual" KB that containghe functional andstructural knowledge of the software
application is an approach that dalp to achievéhese goals. Wexamined thispproach in
the second case study.essage generation systéan English andsreek was developed for
the Style Manager othe HP VUEsystem. This systemioes notequire tomaintain message
catalogues. Messages are generdigthmicallyusing the information fromthe KB and the
information onthe application context (i.e. tasks performed, current position at the user
interface). The message generation systeabls togenerate diagnostic message&inglish
and Greelusing an NLG system along withe correspondingexicons and grammars. It is
also able toadapt themessages according tosat of userevel and style rules that we
specified inorder toexemplify our approach. Teeduce the cost ahis knowledge-based
approach we used laybrid TKB, a simple andeffective KR system and a cost-effective
method for setting up TKBs.

We intend to evaluat¢he performance of thenessage generation system in a complete
software application. This will probably lead ustiodify the KRsystemthe method of TKB

set upand the NLGsystem inorder tomakethe message generation system maybust.

Further we are going tmvestigatethe effectiveness of thigpproach for the generation of

other types of messages apart from the diagnostic ones, as well as for the introduction of other
languages ithe NLG system. Another issue that needs to be investigatie ispeification

of an intelligentuser modelling. We alsdbelieve that thisapproach can be used for the
generation of multilingual interfaces in software applications.

REFERENCES

[Honkela 94] HonkelaT., Kalliomaki, S., Lagus, K. 1994. GLOSSASOHFDeliverable14.1
"VTT Case Study"”, v1.0, July 1994.

[Linsoft 94] Linsoft Ltd., 1994. "FINGEN Reference Manual".

[Karkaletsis94] Karkaletsis,E., Spyropoulos, C.D., Vouros, G. 1994. knowledge-based
Approach for Organising Terminological &a and Generating Messages in Software
Applications. In Proceedings tie "Languagd=ngineering orthe InformationHighway"
Workshop, Santorini, 26-30 September 1994.

[Karkaletsis 95a] KarkaletsisE., Spyropoulos, C.D., Vouros, G. 1995. The Use of
Terminological Knowledge Bases in Soéive Localisation. In Lecturbotes ofAtrtificial
Intelligence (LNAI), no 898, pp. 175-188.

[Karkaletsis 95b] Karkaletsisg., Spyropoulos, C.D., Vouros, GHalatsis, C. 1995.
Organisation and Exploitation of Terminological Knowledge afit@are Localisation. In
TermNet News - Journal of the International Network for Terminology, no 48, pp. 42-48.

[Karkaletsis 95c] KarkaletsisE., 1995. Terminological Knowledge Bases and their
Exploitation in Multilingual Software Applications. Ph.D. Thesis. Department of
Informatics, University of Athens, March 1995 (in Greek).

[Reiter 93] Reiter,E., Mellish, C., 1993. Optimising the Costs andBenefits of Natural
Language Generation. In Proceedings of IJCAI 1993, pp. 1164-1169.

[Spyropoulos 93] Spyropoulos, C.CKarkaletsis,E., Vouros, G., 1993GLOSSASOFT,
Deliverable4.1 "Guidelinesfor Linguisticsfor Interaction Intdmguality”, v1.0, December
1993.

[Spyropoulos 94a] Spyropoulos, C.Xarkaletsis,E., Kokkotos, S., Vouros, G1994.
GLOSSASOFT, Deliverable 8.1 "HP Case Study", v1.0, July 1994.

[Spyropoulos 94b] Spyropoulos, C.D., Vour@, Kokkotos, S.Karkaletsis,E., Honkela,
T., Lagus, K., 1994. GLOSSASOFDeliverable10.1."Guidelinesfor Linguistics", v1.0,
December 1994.

