Design representations and development support for user
interface adaptation

Constantine Stephanidis, Demosthenes Akoumianakis, and Anthony Savidis

Institute of Computer Science
Foundation for Research and Technology-Hellas

Science and Technology Park of Crete
P.O. Box 1385, GR-71110 Heraklion, Crete, Greece
Tel.: +30-81-391741, Fax : +30-81-391740
E-mail: {cs, as, demosthe}@ics.forth.gr

Abstract

With the advent of Graphic&lser Interfaces (GUIAnd theadvances of input/output technologies,
there haseen a shift of perspective, from user interfacegrammingtools to environments for
designing interaction. This is partly attributed technological maturityand partly due to the
increasing requirement to support a need-dri@ed user-centered protocol for design, development
and implementation dhteractive systemslhis paperlinvestigates the architectural shortcomings of
existing user interface developmeaystemsand environments with respect to supporting adaptation
of a user interfacand discusses methods, technique®d tools that areneeded to empower user
interface designers. In particular, the papescribes ahigh level architecture comprising user
interface software componeritsat canprovidethe required desigmlevelopmenandimplementation
supportthat isneeded to facilitate user interfaces for different user groups with diverse requirements
abilities and preferences.

1. INTRODUCTION

The concept oUser Interfacegor All has been mposed (Stephanidis, 1995; Stephanidis et
al., 1995) as &ehicle to efficientlyandeffectivelyaddress the numerous agiderse problems
related to theaccessibility of interactive applications in differetntexts of use. Currently,
there are no developmetaols to practically support the construction of User Interfaces for
all. Towards this objective,the notion ofunified user interface developmehas been
introduced (Stephanidis et al., 1996) with thiglective of supporting platform and user
independent interface development.uAified user interface development platform requires
that only acore of the useinterface is developedyhile the platform anduser-specific
interface properties can laitomatically handled by specilirpose usemterface software
tools. These toolxan automatically managie platform specific issues an@dapt the
resulting dialogue to the particular user (group).

In this paper, we argrimarily concerned with the latter property of umified interface
development platforrmamelythe issue of supportinghe adaptation of the usetterface to
the target user (groupYhe need for adaptation is evident whame considers thdiverse
needs and requirements of differeisier groups, the ide availability of alternative and non-
conventionalinput/output technologies, thempelling needor more usefrriendly products
as well asthe recent trends towardsiversal accessibilitpnd greateusability of interactive

applications. In thizontext, adaptation of the useterface has been found to begaality
attribute of adesign (Benyon et al.1993), aswell as apre-requisite foraccessibility
(Stephanidis et al., 1995; Stephanidi895). As a consequence, future usésrface design
environments Vil increasingly berequired to support tharticulation ofplausible adaptations
at the semantic, syntactic ankxical levels ofinteraction inorder to allow for different
scenarios of use and tsupport selection of appropriatsemanticproperties, user task
sequencing, interaction stylesyput/output devices and interaction techniques, given the
intended user groups and the tasks that they should perform with the user interface.

There have been several studigsestigatingthe numerousdimensions ofadaptation in
interactive softwarsystemgfor a review se®ieterich et al1993),namely, vhat constitutes

an adaptation constituent, tleel andtiming of adaptation, the controlling agent, the type of
knowledge that is required to arrive at meaningful adaptations, etc. Nevertheless, despite the
substantial contributions of these efforts to the study of adaptation, there are stillissuesal

that need attention, if user interface adaptation is to be adequately served by designers and
developers of interactive software applications.

Towardsthis objective, it is necessary to investigate exttact a referencenodelfor user
interface architectures iorder to understand the range aafaptable and adaptive behavior
that is needed and thegay in which it can beeffectively supported throughout the user
interfacelife cycle (i.e. fromthe early design phases to implementation and maintenance). In
the past therdave been severalttempts to extract a referenocedel fromconcrete user
interface architectures order toclassify existingprototypes and tguide the construction of
user interface software. The best known architectural abstractions of user interface software
include the SeeheimTen Hagen, 1990RAC (Coutaz, 1991)ALV, MVC and Arch/Slinky
models (The UIMSTool Developers Workshop, 1992). Howeviigy donot consider user
interface adaptation aspectsloreover, in the literature on User Interface Adaptation,
architectural abstractions are almogssimg. Mostly, particularprototype architectures are
reported (see Cotel993; Sherman et al.,, 1993; Zimek, 19%nchieri et. al., 1991;
Sukaviriya et al.1993, etc)jnstead of abstract models. Ev&iose howevelimit their scope

to address adaptivitywhich constitutesonly one dimension ofuser interface adaptation in
interactive software systems (see next section).

In this paper, we narrow the scope iolvestigation to considethe type of tools that are
needed in order to support the adaptation of user interfacesletitta¢ level ofinteraction to
accommodate théiverse abilities of differentiser groupsjncluding disabledand elerly
people. In this context, adaptation is considered imoad sense, as a technique supporting
the specification of lexical elements afteraction in such a way thahe resulting user
interface is accessible and usablethyy intended usegroup. Ourobjective is to definaiser
interface software componenighich provide designers and developers with the required
support forarticulating adaptation constituents atesigning, developing andaintaining the
user interface, aspposed tarriving at dedicated and programming-intensive solutidhs
objective differs fronmother approacheand effortsaiming toconsider anghropose conceptual
models for the study of adaptationhnmancomputer interaction (cf. Benyoh993). Instead,
the normative perspectivedopted irthis paper is that support for useterface adaptation
should be systematically embeddedhigh level user interface efronments andunified
development platforms, iorder to empowedesigners and developers to articulate adaptation
scenarios and corresponding contexts of use so #&cititate accessible anaghore usable
interactive systems.

This paperreviews recent effortsfowards adaptation ahteractive systems and describes a
new user interface software architectwich provides aunifying view of adaptation
constituents and high leveluser interface development platform supporting adaptation. The
emphasis is othe software components and tootsmprisingthe platform, their properties
andprotocol ofcommunication. An implementation of thiser interface architectusghich
supportdexical adaptability ofttributes of abstragthysicalinteraction object classes is then
presented followed by a discussiontbé potentialimpact of current efforts anglans for
future work.

2. OVERVIEW OF RELATED WORK

In the context of the present work, adaptattmmprises botladaptability and adaptivity.

The term adaptability refers to a techniquiich is supported by the usenterface
development platform, as opposed to a programming-intensive characteristic of an interactive
application. Consequently, implies design and developmemstupport for the automatic
assignment of lexicaluser interface constituents according tiee needs, abilities,
requirements and preferences adeyet user grougbuch a technique can bapported by a
dedicated user interface towlhich assiststhe designer of the usenterface to select
plausible designoptions and decide omaximally preferred ones so as to ensure the
accessibility otthe userinterface bythe target user (group). It isiportant to note that the
above definitionfor adaptability differs substantially fronether definitions commonly

encountered in the relevant Iiteratluras it implies(i) design and developmesupport for
the automatic adaptation of a useterface tothe needs,abilities, requirements and
preferences of target user groupAdditionally, it implies arange of adaptation constituents
which are beyond mere parameterization thie application’s functionality. Orthe other
hand, adaptivity refers to a differesimension ofadaptationwhich takesplace at run-time
(i.,e. during an interactive session with an applicatioif)is type frequentlyinvolves
adaptations of the syntactayer ofthe useinterface (i.eidentification of commorpatterns
of use andsimplification by means omacros). Our account of userterface adaptation
includes both adaptability and adaptivity as introduced abowueless explicitly stated
otherwise.

Research on adaptive and adaptable interfacethenpasthas suffered from a lack of
supporting toolsvhich allow an interface to be sy createdmodified and maintained. Also,
adding adaptability and/or adaptivity toser interfaces so far hasot been suppaed
comprehensively by any high leveser interfacesystem or environment. Some tbie early
attempts to construct adaptalsigstemsare OBJECTLENS (Lai, et al., 1988), BUTTONS
(McLean et al., 1990), Xbuttons (Robertson et al., 198l these systems allothe user to
modify certain aspects of their interactive behaviatile working with them.More recently,
the AURA project (Adaptable User Interfaces for Reusalgpplications) ofthe ESPRIT-II
Programme of the Commission of the European Union has investigated thoroughly the issue of
adaptability (Koller,1993) and theinderlying architecturabstractions for adaptaldgstems.
AURA'’s objective was todefine tools which would allow the specification of adaptable
dialogue behaviour durinthe early design phases atfie coupling of suchtools with high

"The common definition for an adaptabsgstem refers to a systethmat providesthe user withtoolsthat make
it possible tochange thesystemscharacteristics (Opperman, 1994). A similar definitfon adaptability is
found in the work of Fischer (Fischer, 1993).

level user interface developmesystems (i.euser interfacenanagement systems). Tawls
this objective, AURA provided implementations of dialogwets aswell as an event-driven
dialogue definition languag&DDDL) with pre- and post-conditionBialogue nets allow the
specification of adaptable dialogue behaviour by means of grapl@petsentationThis
graphical representation can be transformed th& notation of EDDDLwhich is tool-
independent and can be used for dialogpecification inuser interfacenanagement systems
(Koller, 1993).

Adaptability has also beete chief objective inthe development of the PODIUIglystem
(Sherman et al.1993). PODIUM's purpose is to show that a User Interfde@eagement
System(UIMS) which is supplied with aiser interface@utomatically designefdr a large and
diverse user community can tailor that user interface automatically for each of many subgroups
of a large usecommunity. Theonly knowledge that theystem uses to complete thésk is

the user characteristics thdivide the community intouser subgroups and its experiemath

users who have tailored user interfaces previously ..." (Sherman et al., 1993). According to the
authors, the architecture of PODIUMsembles very muctihe structure of @onventional

UIMS. In PODIUM the User Interface Generator is usedlesign andmplementthe user
interface. The Interaction Handler arbitratdsinteraction between the user and PODIUM
(which includes allowing the user to custom-tailor the user interface).

In addition to the above research effaodwardsadaptability, a number of systems have been
developed to investigatihe complementary objective of adaptivity. Te&ate of the art in
adaptive user interfaces includes OPADE (DeCarolis et al., 1994), fQbte, 1993), UIDE
(Sukaviriya et al.1993), asvell asthe results oteveral projects at national and international
levels, such a®\ID (Browne, 1993), FRIEND21 (Okada, 1994). &ddition to the above
architectures for adaptable and/or adaptive user interfaces, thezebben a fewother
proposalswvhich, however, are more narrow in scogémek in (Zimek,1991) described the
design of an architectu®r adaptable and adaptive UIMS in productidfis architecture
comprises four unctional units,namely, auser moeling component, a tasknodeling
component, a strategy component and a UIMS. One ofntbeesting aspects idimek's
architecture is the strategy compondittis component is responsilfe giving dynamicuser
support bymanipulatingthe dialogue according to thedividual competence and thepecial
problems othe user. An alternative architecturas been described by Arcieri and colleagues
in (Arcieri et al.,1991). They propose a fuetional architecturefor a UIMS integrating
application-independent userodeling capabilities. Finallythere hasbeen substantiavork
towards thedevelopment of dedicatadols andtechniques driving andupporting adaptive
behaviour, such as GUM&innin, 1989), UM (Kay, 1995), UMT (Brajnik et al.,1994),
BGP-MS (Kobsa et al., 1995), PROTUM (Vergara, 1994), and (Orwant, 1995).

The main shortcomings of existing/ork towardsadaptable and adaptive systems is that they
do not provide comprehensive support for user interface adaptation in the contextlevdligh
development environments atabls. Even theAURA projectwhich comeslosest to support
adaptation through tools doemt account forsuch details of user-computer interaction.
Moreover, the range of adaptation constituents consideratbdaccount forbasic design
elements such athe choice of input/output devices, the interaction techniquestroar
attributes of abstract interaction objects, such as the various types of feedbaaitigtien,
interim, completion), access policy, navigation poltopgology etc. As a result, these efforts
do not provide thesupport required to address useterface adaptations frorthe initial
design and development phases to implementation and maintenance. In somehisases,

limitation is directlyattributed to theinderlyingapproach for supporting adaptatiavhile in
other cases it is a question of tools available and the underlying development platform.

3. TOWARDS A SOFTWARE ARCHITECTURE FOR ADAPTABLE AND
ADAPTIVE USER INTERFACES

In this sectionour emphasis W be on progressively developinthe components of a new
architecturewhich cansupport bothadaptability and adaptivity dhe user interface. In what
follows, it is assumed thahe application and user interfagmplementationare separate
concernswhile user interface development is to sgpported by digh leveluserinterface
tool.

3.1. Architectural abstractions supporting adaptation

It is important to note that bothdaptability and adaptivity o@iser interfacesmay be
hardcoded, which implies that the user interface code has a pre-set structure. Typically, in such
cases, adaptability and adaptivelye bothbuilt into the userinterfacecode throughrules

which are local to the userinterface and predetermined. This means that in tasethe
system’s run-time behavior requires enhancements, eittiez fiorm of additional adaptability

or adaptivity rulesthe userinterfacecode wouldhave to beupgraded and recompiled. Of
coursemodifications ofthe targetpplicationmay also be required. It follows, therefotbat

such architectures lead taonolithicsystems which are likely to be large (in linesodle) and

not easily modifiable.

An alternative approach would be to introduce Huaptability and adaptivity rules as
orthogonal to the user interface, udt part of it. This is to say that such rulese not
embedded irthe userlinterfacecode, butthey can be collected as supplementary information
(in files) whichcan be consulted by the run-tirfieraries ofthe userinterface development
toolkit (see Figurel). The architecture described in tHheagram of Figure 1 is cleariyjore
flexible in the sense that the rulégtermining adaptable and adaptive behaviothef user
interfaceare not part of the usenterfacecode. Instead, the useamterface development
toolkit, in addition to theotherfunctions that it carries out, it alsxts as an interpreter of
adaptation decisions established either ratyhwr by anexternal module (see belowlhis
requires that the usaénterface developmertbolkit shouldsupport arexplicit model of the
adaptable and adaptive constituemtisich can be

determined by the rules. Such abstractions are
Rules always desirable inser interface software ahave
@ been integral components dhigh level user
D interface development environments.
Interpreter S g
User ke The only concern regarding the architectural
interface £5 abstraction depicted in trdiagram of Figure 1 is
interpreter 270 the way in which the adaptability and adaptivity rule
2 sets are produceétigure 1 assumes that such rules

may behard-coded or editable through templates,
but this may lead to adbc and non-systematic user

Adaptivity
Rules interface designsMore specifically, tools can be

Figure 1: Alternative architecture for developed teupport the automatic construction of
supporting adaptation. appropriate adaptability and adaptivity rules

according to the userabilities, knowledge, interests asell as anypreferences o$pecific
adaptation constituents (i.e. interaction style, dialogue syntax, input/output devices, interaction
techniquesetc). This observation leads to an enhanced architectural abstradtich is
depicted in thediagram of Figure 2. In this revised architecttoe adaptable and adaptive

user interfaces, threeols have been introducedamely,two design assistants thatipport

the automatic generation atlaptability and adaptivity rules respectively, angsarinterface
development toolkit which is responsible for realizing the adaptable and adaptive user interface
on a target platform (i.e. MS-Windows, X-Windowing system, etc).

In the following two sections, the latter architectural abstraction for adaptable and adaptive
user interfaces is further elaboratedexgmplifyingthe communicatiorprotocols between the
user interface developmesystem andhe two modules foradaptability and adaptivity. It is
assumed that both the useterface development system ahe two modules foradaptability

and adaptivity seek tadapt abstragbhysicalinteraction objects. Such objects encapsulate
everything they need (i.e. appearance, placement, behavimtan)l in terms of attributes
(i.e. size, width, topology, accessPolicy, interactionTechnique,

inputDevice, interimFeedback, etc). Consequently, bothdaptability and adaptivity
concern the automatic instantiation of abstrpleysical interaction objects by means of
adapting their attributes.

I phase I
| |
| I
P Adaptability [Adoptability
I
- o | <l|_l> Module
o)
__g] | A\ |
0T | |
9 5 <+ |
g= : nterpreter |
<5 | | User Interface| 1
= —1 Development| 1
| System I
i I Interpreter :
ser I
nterface [| '
| I
I LI Adapfivity
I I Module
| I
| I
| I

Figure 2: Rroposed architecture for adaptable and adaptive user interfaces

3.2. Communication protocol between theuser interface development tooland the
adaptability module

In order to supporadaptability,the userinterface development system requires knowledge
about theadaptable user interface constituefitsis knowledge allowshe tool to properly
instantiate an abstraphysicalinteraction object into a concrete interaction obfeaf. an X
Windows system menu). Consequentlye role of theadaptability module is to supply as
much as possible of this knowledge. To achieve thesadaptability modulenay beexecuted

by the designer of the interface, before the development of thenteséace commences, to

compile anadaptation design scenario accordingthe user’sabilities, requirements and
preferences. During user interface developmérd, run-timelibraries of auser interface
development toolkitmay consult thedecisions comprisinthe adaptation scenario, ander to

properly realizethe adaptable properties of abstract interaction olglasises on adarget
platform. In this regect, the useinterface development process is separéatad the design

phase (i.e. orthogonality), since the user interface development system may be used by the user
interface developer after the completion of the task oattagtability module. As an example,

let us consider theevelopment

of a simpleuser interfacevhich

Menu.input_device=keyboard

Menu.inputTechnique=indirectPick2D involves the construction of a
Menu.output_device=braille&speechSynthesiser menu. Before the developer
Menu.outTechnique=tactileTechnique . . .
Menu.on_BrailleLines=2 implements the interface with
menugoq_&a”f'ecdetl)lszl?_o o the userinterface development
Mo o audiovoicacals toolkit, the adaptability module
Menu.on_augio\égluhmgy is used to compile a file
enu.on_audioPitch= - .
Menu.fontFamily=helvetica Fontammg maX|m_a_”y preferred
Menu.topology = =horizontal interface adaptability rules. Such

Menu.access_policy=byKeyboard rules may follow the format

Table 1 : Hypothetical lexical adaptability rules | depicted in Table 1. During user

interface development, the
developer uses the useterface
development toolkit to implement the user interface (i.e. select the alpdtyaatalinteraction
object classewhich will be used). The run-timdibraries of the Ul toolkit utilise the
information of Table 1 t@adaptaccordinglythe details ofthe interaction an@mplement the
user interface othe targeplatform. In this waythe menu is automaticallgdapted according
to the user's requiremenhilities and preferences. The communicatfmotocol described
above is summarised in the diagram of Figure 3.

3.3. Communication protocol between theuser interface development tooland the

adaptivity module

Having brieflyreviewed thecommunicatiorprotocol between the userterface development
toolkit and theadaptability module, this sectionlMbriefly discuss a possible communication
protocol between the userterface developmenbolkit and theadaptivity module. However,
before thigprotocol isdetailed, it is perhaps appropriate to considemntbaning of adaptivity
in this context. Let usissume thahe useinterface developer is toonstruct dist containing
textual items, whose size tfe selectiorset is not fed, but dynamicallydetermined by the
application. It follows, therefore, that the exact look &l of the list cannot be determined

UI ask { adapt (manual)

Development Adaptability
toolkit . Rules

adaptation ([
menu. inphevice = Mousa,
menu. inpTechnigque = MousePlck,

meny.outhevice = VOO,
menu.cutTachngee = On_screen.Popup,

1)
Figure 3 : Communication protocol for lexical user interface adaptability

unless the application specifieshe size of the selectionset. Moreover,although the
adaptability module rulebaseayhave a clause stating that in cisesize ofthe selection set
is larger than 25 item#helist should be contained within a scrollimgndow, no adaptability
rule is deducible because the size of the selection set is not known at design time.

This is a typical case of adaptivity requiring that decisionshenadaptation of attributes of
interaction objects be taken at run-time (ihile the userinterface andhe application are
running). To handle this issulie communicatiorprotocol introducegbreviously needs to be
slightly revised. More specifically, whereas in the case @fdaptability the userinterface
development toolkit wasnerely interpreting theadaptability rules before instantiating an
interaction object, in this case it should febd adaptivity module withdata (i.e.size of the
selection set) so as to enalife latter tofire the appropriatedaptivity rule. Thisslightly
revised communication protocol is depicted in the diagram of Figure 4.

ank o sdapt (memu ,
[melocticnSet,Size (2613) | ACa@ibiky
odule

adaprarion | |
ooy Organdaaticn = Singlalavel

n

v
UL — S,
development B ﬁmw [
tMlHit sdaphatian | | H""-._ }_'_,.,-F"/
mend, LopDevios = Houwse,
mand, LopTechnigue = HoasePlck,
miEnd . cutDevion = VDO,
mara, cutTechngoe = On_soresn. Fopup,
mapd, Deganlsation = Singlalaval

e S

Figure 4: Communication protocol to support adaptivity

4. IMPLEMENTATION OF A USER INTERFACE DEVELOPMENT
PLATFORM TO SUPPORT THE DESIGN AND IMPLEMENTATION OF
USER-ADAPTED INTERFACES FOR DISABLED USERS

The above architectural abstraction has been used to desigmglacthent auserinterface
development platform whiclupports user adaptéaterface development fatisabledusers.
The platform comprises a number @bols which implementthe properties of the
aforementioned architecture. Currenthgur developments have focusedpon the
implementation oftools which determine and applpdaptations at thdexical level of
interaction. Morespecifically, a tool calledUSE-IT has been implemented which develops a
semantics of adaptation e lexical leveland automatically catructs dexical specification
scenario depictinghaximally preferredexical adaptabilityules so as to ensuaecessibility of
the target useinterface bythe intended usegroup. In addition, noveluser interface
development toolkithave beerconstructed supporting theevelopment of visual and non-
visual interactionwhile atthe same time, providing developers withe required support to
interpret and apply the lexical adaptability rules to implement a user-adapted interface.

The reasorwhy our currentefforts have beernoncentrated oproviding support forlexical
adaptability isdue to the fact thathis level of adaptability isequired to ensure the
accessibility ofthe user interface. In particular, itakimed that ithe developmenols can
support thelevel of abstraction required tenable designers and developersatapt non-
trivial attributes oflexical interaction (such as input device, input interaction techniguigut
device,output interaction techniques, access policy, navigation potayology, feedback,
etc), then it is possible to develop interfacghkich are automaticallyadapted to the user’s
needs, requirementspilities and preferences. To this effethe tools developed thus far
provide support for visuahnd non-visual interaction two graphical environmentsiamely
MS-Windows and X-Windowing system by means of integratoakits with enhanced or
alternative (in the case of non-visual interaction) interaction capabilities.

Another distinction that needs to be madehis emphasis on adaptability agpposed to
adaptivity. This idue to thecompelling need to considadaptations during thearly design
phases as otherwise macessibility ofthe userinterface bythe target user groupan be
ensured. Consider for instance an adaptive user intewihmd canadapt certairdialogue
characteristics, based on assumptiah®ut the users drawn atin-time (i.e. during an
interactive session). Such a facility is not useful in the context of disadéedyroups, écause

it takes no account of th&undamental problem of accessibility. Wwther words, if no
interaction cartakeplace, due to somdisability, no assumptionsan be drawn and therefore
no adaptation can hgractically supported Consequently, adaptation is concerned with both
initiating andsustaininginteraction. In this sense, adaptability is a pre-requisitadaptivity,
and needs to be addressed explicitly.

Consequently, the approach to supporting adaptatidnish has been followethus far, can
be summarised as follows:

I. User interface adaptation rulese conpiled by the USE-IT toolwhich reasons about
adaptation constituents, seleptausibleadaptations and decides oraximally preferred
ones, through thenification of constraints pertaining to tHexical level ofinteraction
(i.e. constraints related to tldevice availabilitythe user characteristics and the tdskt
is to be performed with the user interface).

Il. User interface adaptation rules are subsequently interpreted by the rundonkes of the
underlying high leveliser interface developmetaolkit with which the useiinterface is to
be implemented so that adaptations are instantiated onto a target technology platform.

In this manner, adaptation of thexical layer ofinteraction is automaticallgupportedduring
the initial design and development phases of the user interface.

4.1 Adaptation Constituents

In this approach, daptable interface constituents are the attributes of abstract interaction
object classesln the recent literature (Myers, 19%odart etal., 1993), the term abstract
interaction object (AlO) habeen associated with severpfopertiespriefly summarised as
follows: (a) AlOs areapplication domain independe(ity) they encapsulatal the necessary
interaction properties (i.e. appearance, placement, behstate, etc) byneans ohttributes

(i.e. size, widthgolor, and methods such as selection, activasitaiechange, etc)c) they
preserve a degree of independence from particular windowing systems and environments (i.e.

they are platform independent). In tleentext of the present work, the term is used in a
broader sense to include additional properties such as the following:

+ AIOs are adaptable to the end user (i.e. their attributes can be adapted through
reasoning);

« AlOs are metaphor independéatg. an AlOcan be applicabl®r both the Desktop and
Rooms metaphor);

« AIOs may have multiple physical realizatior(ge. they supportpolymorphismat the
physical implementation level).

Abstract Interaction Objects possessing the extersg¢df properties are referred to as

mataphior DeikTop; virtual - interaction objects.

upobiect Menu (DeskTop) Virtual object classes have
Mol [method Selectad ; physicalrealizations, depending

Atfributes Tﬁt:zj E':'f-‘”é"'t-‘ on the target environment,
— AR referred to as instances of

string Font = "CourierHew™ ; virtual objects (Savidis et al.,

Style imb FemtSize = 127 1995a). In the present work,

& Hribnrtas atring Foreground = "White™ j . .

atring Background = “Black® j adaptable interface constituents

are attributes of physical

Menu. Input = "3canning” ; instances of virtual interaction
Hama.0utpat = "Spaach™ ! . | Th n |
Inderacton Style Menu.Topology = ="Vertical"™ ; ObJ.eCt casses._ e conceptua

Abtribaies R e Lo L object modelvhich |s_shar(_ad b;_/
Hemu.Status = "Overlapping™ ¢ all tools being described in this

] Menu.Type = "Split® ; part of the paper idepicted in

the diagram of Figure 6.

Figure 6: A conceptual representation of the object model _ _
The following subsections

provide abrief account of the development amdplementation ofuser interfaceools to

support adaptation. In particular, thdaptability module anthe toolkits used fomterface

development and reviewed.

4.2. Deciding on maximally preferred lexical adaptability rules

Adaptation decision®r attributes of AlOs arautomatically derived by #ool, called USE-

IT. This is accomplished in a sequence tbfee phases: (i) reasonirapout adaptation
constituents;(ii) selection of plausibleadaptations for each user interface constitugit;
decision on maximally preferred adaptations.

The USE-IT toolcomprises: (i) a representation of design elements (i.e. modéig afser,
the task,and theavailability of input/outputdevices); (i) arepresentation of adaptation
constituents; andii) algorithmsand an inference engine teason abouselectplausible and
decide on maximally preferred adaptations (see Figure 7).

Adaptability decisionsare automatically compiledor those attributes whose adaptation is
necessary to facilitate accessibility tbe interface bythe target user group. this manner,
user-specific details (i.abilities to operatedifferent input/outputdevices and/or interaction
techniques, accesolicy for container objects, topology of interaction objects,

initiation/interim/completion feedback of interaction objeatt;), are transparent to the
interface programmer as this knowledge is embedded within the development platform.

User Resource §
Availability |[£ LT T T N
E , User-centered >«
—> - & —> Design Constraints /
Device Resource |7 S~ _ . __- -
Requirements %
_©
[0} .
¢} Syntactic =
<] - T T T ~
Knowledge 3 +” Task-oriented
- - — & —> Design Constraints /
! Design heuristic| g S~ __-- -
2] —
L_u Rules < Adaptation Lexical
N Engine Y Adaptability
3 o _ P Rules
g Lexical = __j

lLexical Interaction
—> —>

Primitives (AIOs)

> Platform D a Platform N\
constraints < _ Constraints _ _“/

Figure 7: Overview of USE-IT’s architecture

Lexical adaptability decisionsire derived for attributes of abstract interaction objeetsask
contextandinteraction metaphorin general, interaction metaphaonay beeither embedded

in the User Interface (i.enenus as interaction objects folldhe “restaurant” metaphor) or
may characterize the properties of and the attitude obtlesall interaction environment (i.e.
the desktop metaphor presents the wg#r an interaction environment based on sheets of
paperscalled windows, folderstc). In the present work, it @ssumed that each development
platform (i.e. OSF/Motif, MS-Windowstc) serves one interaction metaphor (i.e. viszal
desktop).Consequently, each of thoglkatforms provides thenplementationasupport that is
required for the interactivenvironment othe metaphorDifferent interaction metaphors may
be facilitated eitherthrough theenhancement of existing development platforms or by
developing new ones. Agxample is CommonKit (Savidis at., 1995b)which supports non-
visual interaction based on the non-visual Rooms interaction metaphor.

The second construct which determines the derivatidexafal adaptabilityules by theJSE-

IT tool is theapplication specifitask contextTask contextfacilitatethe derivation ofexical
adaptability rules based on syntactic knowledge.otiner words,different rulesmay be
inferred forthe same object depending d¢ime particular dialogustate.Consequently, a task
context characterizes"dialoguestate” andcan be conceived as thentext of agiventask in
which the user is engaged at a partictiare. Dialoguestates are indicators of what the user
interface orthe user is doing any point in time. It is important tmote thatdialoguestates
are application-specific and thepurpose is two-fold. Firsthey renderthe userinterface
adaptation process task-aware. Secondly, they provide the means for reasoning towards lexical
adaptability rules based on syntadticel user interface knowledge. oither wordshey allow

for different adaptations dhe same object depending dine dialoguestate. Thus, anenu
item may beselected through voice inputhenthe userwishes to review a text file, hile
when selecting taipdate the text, the correspondimgnu itemmay beactivated through
pointing in 2D. In such a case, the adaptable attributes are the dgwite andthe input
technique used to interact with the menu item.

Task context attributes are characterization critestigch identify the application oriented
interaction requirements in the currstate of thedialogue. Each task contextdsscribed by
means of itassociated application requirementswards this, amall set of characterization
criteria have been used to provitie requirednformation (i.e. whethethe task requires 2D
positioning, size othe selectiorset in case the uskas to do selection, range of a valbat

has to be entered, etc). Thesignerdoes noneed to instantiatall criteria for a task context,
but only thosewhich are relevant. These properties atered in a taskchema, which is a
collection of attribute-value pairs associated to the partiagplication specifitask context,
and then, thewre interpreted to depict task-related constraints (i.e. the task reqretatve
device, the selection set is large, etc). It is important to note that the USE-IT tool provides the
designer with facilities which allovthe elicitation of design representations based on the
definition of task contexthierarchies(see upper window of Figur@), instantiation of each
node in thehierarchy(see lower window of Figure 8) amevisions ofthe lexical specification
layer and the user interface adaptation constituents.

Manager Application Help

= Application Task Context Tree B
CDWE‘Q’_EDHE

Leview text
hypermedi al—‘h;rpermedia. T'[JSl—

dizplay ohject]

= Task context requirements it
| | Application Ihwermedia Task context Idisplay_nhject
= | Metaphor: Requirement
visualDesktop size of selection set
nonvisualRooms range of selection set
Tyne:
Value |15]

Task context class
selection

Figure 8: Building and compiling task context schemas

| Lusical Livenl dedupainiian Cenrilianni [=l#

Conubtaand 'fsis dis

=l :‘Ja ‘J.:______%?_"E!_lﬂa
e
[| ok |
Canmtunst 090 [Gipran at ahibore E
il ke wi ik v |p|j-“i
(]
iakrinal e eatehre

e e, Wi bvr]
rd ibaa e, "aba il ey

ic Cuah ek e gurial
———— Taan_genersl_giribuisiCge el 7, il verd T
=i dovire tuaa_smnlbersi T e e, “gens il

S _gpeaaiel_pt it iel ", CeenEea et

|

L
W E

.

[

wi ok b
e

Figure 9: Maintaining the lexical level specification

The USE-IT toolimplements a semantimetwork to represent constructs of tarical layer
(see Figur®). The designemay select to edit agxisting lexical specification areate a new
onefrom scratch depending dhe requirements of thargetapplication andhe user group.

In this manner,the designer can disregakveral interaction objects, or attributes of
interaction objects ospecific values othe domain of amattributewhich are notsuitable or
desirablefor the particular usegroup. Forinstance, cognitive impairagsers havelifficulties
with certain interactive behaviors (i.e. menpap-up windows,etc). Consequently, the
designemay select to remove these elements fribialexical specificationthus causing the
adaptationengine ofUSE-IT to disregarcatertain interaction object classes or some of their
attributes.

Each abstract interaction objexass is related tattributesvia semantic relationships. These
relationships specifthe type of each attribute, #ss is important fothe adaptation process.
Thus, an attributenay be classifie@ither as a generattribute, or an appearance attribute, or
a behaviorattribute. General attributesare common toall interaction object classes. The
general attributessupported in the currenversion of USE-IT are inputDevice

inputTechnique , outputDevice , outputTechnique , initiationFeddback,
interimFeedback, completionFeddback. In a future version, it is planed to introduce
two additional generalattributes, namely startEvent, abortEvent . During the

adaptation process, the semantic network description is used to compile a frame representation
of the abstract interaction object class being adapted. Attributes of an object frame are adapted
by a recursive al to an algorithm whiclconsiders general attributes first, then appearance
attributes andinally behaviorattributes. Anadaptability decisiomay beestablished either as

a result of a default rule, a preference or a setalards amaximally preferred option.

Defaults and preferences asgically used to adapt simple appearance attribstesh as
borderSize fontFamily, typeFace, &. General and behavior attributase adapted through
reasoningowards amaximally preferred optionTypically, the adaptation of such attributes
depends on three types of design constraints, namely:

« device availability;

« user-oriented design constraints which are compiled from the user model;

« task-orienteddesign constraintsvhich are derivedfrom the task contexschema and
depict application task requirements.

Deviceavailability is built intothe systemthrough a toolwhich allowsthe construction of a
domain-specific device model (Akoumianakis et &D95). Morespecifically, the designer

selects a particular device description (containatigavailable devices) or builds a new
description from scratch. Thgimitivesused tobuild device modelare summarised in Table
3.

<Device>::- Dname,[HumanControlAct],[ContactSite],[PerformanceParameters],
Qualityattribute.
<HumanControlAct>::- Movement of one hand | Movement of both hands |Directed eye Gaze |
Head and neck movement [Movement of lower limbs |Vocalisations.
<ContactSite>::- finger tips of hand |fist|left upper part of head|
right upper part of head|top of head| ControlExtender
<ControlExtender>::- Hand held pointer|Hand held pen|mouthStick|headStick.

<PhysicalAction>::- MotorAttribute| VisualAttribute|HearingAttribute| TactileAttribute|
CommunicationAttribute|LearningAttribute.
<MotorAttribute>::- Constant|Term.

<VisualAttribute>::- Constant|Term.
<HearingAttribute>::- Constant|Term.
<TactileAttribute>::- Constant|Term.
<Coml/tionttribute>::- Constant|Term.
<LearningAttribute>::- Constant|Term.
<QualityAttribute>::- Term.

Table 3 : A model-theoretic view of input devices

Thus, each device is melted in terms of pragmatiattributes depictinglevice operation
requirements. A typical device description is shown in the diagram of Figure 10.

= Ut Misded Roid earien Tosal
H:..l_:u.u [I!l.-lr!r._ A e
[<] pufOiatpn Deveer chamactereitas, BE
fumiar_Cares 1ok § Promaerr st rrn bard
fareenent of v sl Dasiees wealabbs

R T |
| B — —jlavesazz cf boch hsods Muorenant ot sns ke

bl "
) e — {FLsaei Tips of iwiiei] Dirmelnd syn-pam

; |={immi-keie pranoce] Haid mwsrmeeal
fapaancd Concact mics— ———— Moremeid ol bwer lnhs

ok el aliing
Lame Lo - |
SERLL IS % : frCackiall_Conczol e rd ore b | oo | Cancal I
Caclbsll) — A, et - = -
u! ERRENA] COn sl & |5 |-
r—rreuent ot ora bl
Jiraills Conrrol s =
= 5 bor .
rrpT Eemilla dxs £ borh i
foraiiic Fenter rit o {rag hoard]

Figure 10: Building device model (Allocating control acts)

= it Ml B gdilms L Emaa| |

Brariminilnr ke e T

=

B
i‘i h

LiF mogri i o Biad
Bighluper: cad n'beed
Frmm inp ol hrad

, [RusS IR [‘

Figure 11: Building a user model usiﬁg U.MAT

A usermodel isconstructednteractively by declaringhe abilities possessed by a particular
user. There areix classes of abilities)amely motor, visuahearing, tactile, communication
and learning abilitiesFor each one of thoselassesthe designer can allocate a range of
specific abilityparameters as required. Fetample the specificparameters of motabilities
may contain theidentification of the user’sreliable control acts, contact sites, batso
possession of functional capabilities suchabsity to push and pullability to perform the
control act ordemand, etc. During an interactive session, the desigiseribes a prospective
user by instantiating eachne of theability classes, and subsequently, mmany of their
parameters as required. Figure 11 indicatégmal session with UMAT which allows the
designer to buildhe user’s description. Theee depicted in thiower-left hand side of the
diagram of Figure 11 represents in a hierarchical form the contents of the current user model.

It is important to mention thahe underlyingrepresentation cdbility classes and parameters
forms anetwork which can bedeveloped from scratch Ithe designer, according to the
requirements of a particular scenario of udes means that UMAToes not operatapon
pre-definedability classes and corresponding parameterstetd, it allowshe designer to
build a desirabledescription of characteristiabilities which influencethe currentdesign
scenario. This was necessitatedniginly two reasons. The first relates tioe broad range of
user characteristics that arsuallyneeded to describe users, avidch are not ahays known
or cannot bepredicted in advance. Consequently, the designer showtoesd to modify
and sometimes totally redefine the contents of the knowledge base and the inferencing facilities
that have been used in a particular context. The seconth@stdimportant reason accounts
for the fact thaexisting assessment manusigygest clusters of context-independauitities.
Thus, they would recommendsaanning device, ithe user possessed thhilities of gross
temporal control, visual tracking skills, and control movementscanthctsites that allow the
operation of a switch. However, the switttay beperfectly appropriate in a totalbjifferent

scenario of usd-or instance, a switcimay bepreferable for a young and computer-illiterate
child using areducational software application requiringraall number of selectiotargets.

In this case, the rule which should trigger the use of the switch is a thtldhgntone than in
the previous case. Consequently, it becomes apparent thdoitimgn UMAT intends to
capture andmodel isnot subject to a single interpretation. This, turn, necessitates the
modifiability of the underlyingrepresentation language (i.e. both the constants dénigeage
and the inferencing facilities).

User centered-design constraints are declared by a three-argument predicate:
constraint(user,Constituent, assignment)

Such constraints are derivadtomatically by interpretinghe contents of the selectddvice
model againstthe current user model. The interpreter is a routimech translates the
disjunctive semantics of a device model inteed ofrules and subsequently runs these rules
against the current user modelisjpDnctions in thedevice modekre due to the fact that a
device may be operated with more than one control act and for each control atttanaee
contactsites may beused. This gives rise to a disjunctive problem description which is
translated into a conjunctive formulation foyeans of compilingules. Such rules asgored in

a file which is subsequentlyun against the user model. Duritlgs process, the translator
considers the indifference classes in an ascending order starting with the first indifference class.
Thus, at the end of the process, UMATalsle to selecthe input/outputdevices that are
maximally preferred and can baperated by the useAccordingly, it derives any additional
information regardingdbther lexical attributeswhich are dependent upon the selection of an
input/output device.

On the otherhand, task-oriented constraints are derivemin the task contexschema
descriptions which contain syntactimowledge about thearious dialoguestates. A task
contextschema is aepresentation languagéhich isused to consolidatapplication-specific
task requirements, in terms of application-specific task context requirementseinofiaitial
preference and/or indifference expressioiifle designer can interactivelgpecify the
application requirements of a dialogwtate in terms ofgeneral characterization@.g.

* Task context aggregation policy */
policy("Link selection’,
speed_of_cursor_movement(true),
continuous,discrete).
[Hammmmm - End of task context aggregation policy *
[*-----Known Preferences in criterion speed_of _cursor_movement(true) --------- */
1: preference(Link selection’,inputDevice,
speed_of_cursor_movement(true),
keyboard,mouse).
2: indifferent("Link selection’, inputDevice,
speed_of_cursor_movement(true),
mouse, trackball).
3: preference("Link selection’, inputDevice,
speed_of_cursor_movement(true),
trackball,data_tablet).
4: indifferent("Link selection’, inputDevice,
speed_of_cursor_movement(true),
data_tablet, joystick).
5: indifferent("Link selection’, inputDevice,
speed_of_cursor_movement(true),
joystick,lightpen).

Figure 12: Task context schema

selection, text entry), aggregation critefgag. non-visual interaction) and intentions. Such a
design representation is subsequently run against preference constraints (Akoumianakis et al.,
1995) which allow the derivation ofmissing informationand theranking of competing
alternatives into indifference classes. A typieak contexschema is depicted the diagram

of Figure 12.

4.3. Towards adaptability decisions

To facilitate adaptation decisions based on the three sets of design constraints identified above,
a data structurbas been developedhich serveshe purpose otonsolidatingthe semantics

of adaptation of a particular attribute intcdfamal representatiorwhich allowsUSE-IT to

decide on thenaximally preferred optionThis data structure is referred to as tduaptability

model treeof an adaptation constituent. Awlaptability modetree is attributespecific and,

once compiled, it encapsulatal plausibleadaptability decisionfor a particular attribute of

an abstract interaction object class. To demonstrate the details ddttistructure, asell as

the semantics that it can accommodate, let us consider a hypothetical sdegtan®assume

that the attribute to be adaptedniputDevice and thahe user and task oriented constraints

are as follows:

Uconstraints= { keyboard, data_tablet, joystick }
Teonstrainis= {Mouse, trackball , keyboard, data_tablet }

Let us further assume that the device availability constraints are:
DAconstraints= {mouse, trackball , keyboard, data_tablet, joystick, lightpen }

Given the above sets of constraints th@aptability modetree for attributeinputDevice is
depicted in the diagram of Figure 13.

From this figure, it follows thathe totalnumber of branches in an adaptability mottek
equalsthe number of constrairgets. In other wordgach branch ithe tree corresponds to a
constraint set. Thentersection of the threbranches definethe minimal model tree which
satisfiesall design constraints. Thulgr the situation described in tligagram of Figure 13,
the minimal model tree is defined by the set:

MINmoder= { ((input_device(keyboard), input_device(data_tablet)),
input_device(keyboard), input_device(data_tablet))}

I nput_dev 1 ce(keyboard)
N

ol
1
Jevice(data_tablet)

input_dé\}iée(mouse) input_device(joystick) input_device(mouse)

input_

input_device(trackball)

input_device(joystick)

input_device(lightpen)

input_d'evice(trackball)

Figure 13: Adaptability model tree for attribute inputDevice

Any one of theelements of thisset could be gplausible adaptation for the attribute
input_device. However, for the purposes of the presenk, USE-ITdecides in favor of the
solution which preservesmaximal multi-modality. Thus, themaximally preferred option is
defined by the expression:

input_device(keyboard) Oinput_device(data_tablet)

Consequently, the adaptability decision which is compiled for this attribute is as follows:
Metaphor.taskContext.Object .Input_device= [keyboard, data-tablet]

The above procedure is applied for the adaptatiall attributes fowhichthere is no dfault
or preference expression in the corresponding knowledge bases.

Sampleoutput of the USE-IT tool idepicted in theliagram of Figurd4, wheresomelexical
adaptability decisionare listed for abstract interaction object. CurrentlySE-IT adapts all
abstract interaction object classes of an interaction metaphor assigned by the designer, for each
task context of a particular userterface. Additionallythe file depicted in Figure 14 may
contain decisions for more than one interaction metaphor if this desired.

AGGESS Development Platform / USE-Ttool Ver.1 1GS-FORTH % Rl -
Manager Edit Models Define Help Window

= RULES.TXT v |~

8:34 Insert Indent 1
visual_ desktop
link_selection

nenu

input device ["mouse™]
inputTechnigque ["indirectPickZD"]
output_device ["hraille"]

outputTechnigue ["tactileTechnigue™]
on_Eraillelines 2
on_BrailleCells 80

fontFamily helvetica
topology horizontal
access_policy byKeyboard
menuButton
input_device ["mouse™]
inputTechnigue ["indirectPickZD"]
output device ["speech synthesiser"]
outputTechnigque ["auditoryTechnique"]
on_AudioPitch platas
on_AudioVolume yyy
on_AudioMaleVoice male
listEox
input_device ["mouse™]
inputTechnigque ["indirectPickZD"]
output device ["hraille"”, "speech synthesiser"]
outputTechnique ["tactileTechnique”, "auditoryTechnigue'

on_Eraillelines 2
on_BrailleCells 80

on_AudioPitch laied
on_AudiocVolume y¥y
on_AudioMaleVoice female
fontFamily helvetica
+
. +
e -

Figure 14: Output of USE-IT depicting a sample of lexical adaptability rules derived automatically
for the task context link_selection.

4.4. Applying adaptability decisions through an interbce development framework

Until now, design support has beeerelyfaced as the generation géneral high-level design
suggestions (such as, fexample, hypothetical design guidelines, likge of formswith
explicit confirmationfor field values, whichcould be targeted tspecific or non-specific
application domains). The problem with such approachespfactically supporting the
interface design process can be summarized as follows:

l. Guidelines are too specialized and their applicability is limited to particular contexts.

Il. Guidelines have beawno general and lospowerand value when applieidr specific
contexts.

. The relevant topic had small or no relevance with the target application domain.

IV. Theinitial interaction objectives of guideline@gere differenteven contradictoryvith
the target domain and consequently the guidelines were not applicable.

V. The topic and objectives had stromglevance, howeverapplying the guidelines
directly could be problematic, while an "adaptation” of the original guideoestd be
much less than practically trivial.

VI. Different design guidelinegor the sametopics and objectivegive incompatible
instructions.

VII. Large number of guidelines.

VIIl. Guidelines are not structured in a way reflecting a comprehensive design process.

The previous problemlimit considerablythe practical integration of such generatisign
suggestions during th@esignprocess. Moreover, the automasipplicability of such design
decisionsthrough annterface development systetannot be realized. Currently, there is no
support forexplicitly incorporating design decisions irttee interface development process by
means ofautomatic interpretation and realization of decisiaithin the resulting interface
implementation.

The USE-IT toolhas over-passed thfficulty by extending design suggestions to more
concretenterface design scenarios. THSE-IT toolhasthe ability to generate differemules
concerning attributes of interaction objedfisses according tthe particular interaction
contexts. Thesedecisions can be interpreted aagplied automatically duringser-computer
interaction by interactive applicationshich are built throughspecific interface development
systemgqsee Figurel5). Consequently, such interactive applications practically implement the
design decisions generated the USE-IT tool.This behavior is achieved e proper
synergy ofthe USE-IT tool with the interface development framewonkhich has to
understand andapply decisions provided by the USE-ITtool. This strategy of
implementationallyseparating systems with different roles during development process has
many advantages:

« Maodification independencesince modifications atne system dmot affectthe other. In
our approach, theommunication betweethe systems iseduced to thdile which is
produced by the USE-IT toaind read by thanterface implementation, while protocol
is mainly the syntax of that file.

« Implementation independenceince different programming languages can be employed
for different systemskFor instance, théJSE-IT tool has been developeda the Prolog
language, while the interface implementation is provided in the C++ language.

« Design role resolutionsincethe USE-IT tool is targeted tmterface designers and
human-factors specialistsyhile the interface development systems concern interface

implementation experts.

It should benoted that existing

interface development

environments usually require that the designer also deals with implementation notations.
« Knowledge reusabilitysince design decisiomsr a specific domain can be directly re-used
for interactive applicationsvithin the same domain. This is possible sinte design
decisions can be si§y transferred to the newnterface implementatiorithe interface
implementation will automatically apply the rules).

The interface development systembkich has been implementsdpports powerful methods
for abstraction of interaction objects and interaction technidgi@s.has been an important

Designers

feature forpractically supporting thedesign
decisions generated by the USE-IT tadlich
relies upon a sophisticateanodel of the
lexical layer of interaction that is not
supported byexisting toolkits of interaction
objects. It should benoted thatwith more
sophisticated andavell structuredmodels of
the lexical layer, it is possible to accomplish
high quality of adaptabilityConsequently, it

is critical to have interface development
systems which practicallyprovide better
organization and decomposition déxical
interaction elements. We have utilized the
object abstraction methods of theterface
development framework so as to match the
structural aspects of thdexical level of
interaction as thegrerealized fromthe USE-
IT tool point of view.

Users

i

USE-IT

|
g3ndino

\
!
/

- ~

,” Lexical \\\
(Adaptability)
‘. Decisions ,

~ -

!
\

andut

i

Interface
Implementation

produce

i

Interface
Development
Tools

it

Developers

lexical desgn decisions

5 SUMMARY

: AND
CONCLUSIONS

Figure 15: Synergy of USE-IT with
development tools for automatic application of

interface

In this paper, an attemitas been made to review someha existing efforts described in the
relevant literatureidentify their limitations and consider alternative architectafadtractions
that may beused to support thdesign, development and maintenanceddptation in user
interfaces. In thicontext, adaptation was considered in a brsawgise encompassirgpth
adaptability and adaptivity. It was showmow adaptable and adaptive constituents can be
integrated in a high level user interface development platform that provides the relgsiggd
and developmentupport. Inaddition, the paper describedecific developmentsindertaken

in the context of the ACCESS (TP1001) project of the TEY&gramme of th€ommission

of the Europeatunion (DG XIlII), towards thedefinition, design and implementation tobls
supporting thelesign and implementation o$er-adapted interfaceddore specifically, auser
interface design assistant was describith automatically deriveadaptation decisions at
thelexical level ofinteraction. These decisions relatethe adaptation dexical attributes of
abstract interaction objects required to ensure the accessibility of the user interface by different
user groupsjncluding disabledoeople. In addition, the structusmd capabilities ohovel
interface development toolkits hasenpresented. These toolkits arapable of interpreting
the adaptatiomlecisions olUSE-IT to provide the required development antgplementation

support of user-adaptedterfaces fortwo interaction metaphors supporting visual and non-
visual interaction, respectively.

ACKNOWLEDGMENTS

The presentwork is carried out in the context of the ACCES$foject (TP1001) funded bthe TIDE
Programme of the Commission of the European Union. Partnéhnssiconsortium areCNR-IROE (Prime
Contractor), Italy; ICS-FORTH, Greece; University Athens, Greece; RNIB, U.K.; SELECO, ltaly; MA
SystemsLtd., U.K.; Hereward College, U.K.; National Reseasrid Development Centre for Welfare and
Health, Finland; VTT, Finland; PIKO Systems, Finland; University of Hertfordshire, U.K.

REFERENCES

Ancieri, F., DellOmmo, P., Nardelli, E., Vocca, P (1994)user Modeling Systenm Human
Aspects in Computing - Design and Use of Interactive Systemsvaridwith terminals,
Bullinger (Editor), pp. 440-447, Elservier.

AkoumianakisD., Stephanidis C(1995):Developing domain-specific device representations
to facilitate user interface design for disabled pepplémitted for publication.

Benyon,D., Murray, D. (1993):Adaptive Systems: from intelligent tutoring to autonomous
agents Knowledge-Based Systems, 6(4), pp.197-219

Bodard, F., Hennebert, A-M., Leheureux, J®fovot, |I.,Vanderdonckt, J. (19947 model-
based Approach to Presentation: A Continuum from Task Analysis to Prqtatype
Proceedings of Eurographics Workshop on Design, Specification and Verification of
Interactive Systems, pp. 25-39.

Brajnik, G., Tasso, C. (1994)A Shell for Developing Non-Monotonicsél Modelling
SystemsInternational Journal of Human Computer-Studies, 40, pp. 31-62.

Browne, P., D. (1993)Experiences from the AID projedh M. Schneider-Hufschmidt, T.
Kuhme and U. Mallinowski(Eds.), Adaptive User Interfacep: 69-78, Amsterdam:
Elsevier Science Publishers B.V, North-Holland.

Cote-Munoz, A., H. (1993): AIDAAn Adaptive System for Interactive Drafting and CAD
Applications in M. Schneider-Hufschmidt, T. Kuhme and U. Mallinowgl&ds.),
Adaptive User Interfaces, Amsterdafisevier Science PublisheBV, North-Holland,
pp. 225-240.

Coutaz, J. (1990)Architecture models for interactiveoftware: Failures and trenddn
Engineeringfor Human-Computer Interaction, G. Coct(#d), North-Holland, pp: 473-
490.

Dieterich,H., Malinowski, U., Kuhme, T., Schneider-Hufschmidty.(1993): State of the Art
in Adaptive User Interfaces. Adaptive User Interfaces: Principles and Pradtice
Schneider-Hufschmidt, T Kuhme and U. Malinowgkids.), Adaptive User Interfaces,
Amsterdam: Elsevier Science Publishers B.V, North-Holland, pp. 13-48.

De CarolisB., deRises, F(1994):Modelling Adaptive Interaction of OPADE by petri Nets
SIGCHlI, Vol. 26, No. 2, pp. 48-52.

Finin, T. (1989): GUMS:A General User Modelling Shelin User Models in Dialogue
Systems, A. Kobsa, W. Wahlster (editors), pp. 411-430.

Kay, J. (1995)The um toolkit for reusable, long-term user modelserModelling andUser-
adapted Interaction, 4(3).

Kobsa, A., Pohl, W. (1995The user modelling shell system BGP;hSJserModelling and
User-adapted interaction 4(2), pp. 59-106.

Koller, F. (1993): A demonstrator based investigation of adaptahility M. Schneider-
Hufschmidt, T. Kuhme and U. Mallinows{&ds.),Adaptive User Interfacepp. 183-196,
Amsterdam: Elsevier Science Publishers B.V, North-Holland.

Lai, K., Malone, T. (19988)Object Lens: A Spreedsheet for Cooperaterk Proc. of the
Conference on CSCW, ACM, New York, pp.115-124.

MacLean, A., Carter, K., Lovstrand, L., Moran, T, (1990Yser-Tailorable Systems:
Pressing the Issues with Buttoi@HI'90, ACM, New York, pp. 175-182.

Myers, A., B. (1990)A newModel for Handling InputACM Transactions on Information
Systems, 8(3), pp. 289-320.

Okada (1994)Adaptation by task intention identificatioim FRIEND 21 Conf. Proc., Japan,
1995.

Orwant, L., J. (1995)eterogeneous Learning in the Doppelganger User Modelling System
in User Modelling and User Adapted Interaction , 4(2), pp: 107-130.

Robertson, G., Henderson, D., Card, S. (19®ttons as First Class Objects on an
XDesktop UIST '91, ACM, New Yoark, pp. 35-44.

Savidis,A., Stephanidis, C. (1995dpeveloping Dual User Interfacdsr Integrating Blind
and Sighted Users : ThEHOMER UIMS",in Proceedings of CHI'95 Conference on
Human Factors in Computing Systems, pp:106-113, ACM Press.

Savidis,A., Stephanidis, C. (1995blpeveloping Non-Visual Interaction on the basis of the
Rooms metaphpin Companion of CHI'95 Conference on Huntactors inComputing
Systems, pp. 146-147, ACM Press.

ShermanH., E., Shortliffe, H., E. (1993):A User-Adaptable Interface to predict Users'
Needsin M. Schneider-Hufschmidt, T. Kuhme and U. Mallinowdkds.),Adaptive User
Interfaces, Amsterdam: Elsevier Science Publishers B.V, North-Holland, pp. 285-315

Stephanidis,C., Savidis, A., Akoumianakis, D.(1995): Towards user interfacesor all,
Conference Proceddings of 2nd TIDE Congress, pp. 167-170.

Stephanidis, C(1995): Towards User Interface®r All: Some Ciriticallssues in Proceedings
of HCI International ‘95 Conference oHuman Computer Interaction, pp. 137-143,
Elsevier.

Stephanidis,C., Savidis, A., Akoumianakis, D.(1996): Development tools towards User
Interfaces for Allto appear in Internation Journal og Human-Computer Interaction.

Sukaviriya, P., Foley, J(1993): Supporting Adaptive Interfaces in a knowledge-based user
Interface Environmentin W. D. Gray, W. E. Hefley, and D. Murrgfds.),Proceedings
of the 1993 International Workshop tntelligent User Interface@p. 107-114)Orlando,
FL. New York: ACM Press.

Ten Hagen, P.J.W. (199@ritique of the Seeheim modét User Interface Management and
Design, DuceD., A., Gomes, M., R.Hopgood, F., R., A.and Lee,J., R. (Eds),
Eurographics Seminars, Springer-Verlag.

The UIMS Developers Workshop (1992):Metamodel for the run-time architecture of an
interactive systenSIGCHI Bulletin 24, 1.

Vergara, H. (1994)PROTUM - A Prolog based Tool forser Modelling BerichtNr. 55/94
(WIS-Memo 10), University of Konstanz, Germany.

Zimek (1991): Design of an adaptable/adaptive UIMS in productionHuman Aspects in
Computing - Design and Use of Interactive Systemsvemdk with terminals, Bullinger
(Editor), pp. 748-752, Elservier.

